Advertisement

Parallel Solvers for Flexible Approximation Schemes in Multiparticle Simulation

  • Masha Sosonkina
  • Igor Tsukerman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)

Abstract

New finite difference schemes with flexible local approximation are applied to screened electrostatic interactions of spherical colloidal particles governed by the Poisson-Boltzmann equation. Local analytical approximations of the solution are incorporated directly into the scheme and yield high approximation accuracy even on simple and relatively coarse Cartesian grids. Several parallel iterative solution techniques have been tested with an emphasis on suitable parallel preconditioning for the nonsymmetric system matrix. In particular, flexible GMRES preconditioned with the distributed Schur Complement exhibits good solution time and scales well when the number of particles, grid nodes or processors increases.

Keywords

Cartesian Grid Yukawa Potential Parallel Solver Parallel Iterative Method Processor Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tsukerman, I.: IEEE Trans. Magn. 41, 2206–2225 (2005)Google Scholar
  2. 2.
    Tsukerman, I.: J. Comput. Phys. 211, 659–699 (2006)Google Scholar
  3. 3.
    Salin, G., Caillol, J.M.: J. Chem. Phys. 113, 10459–10463 (2000)Google Scholar
  4. 4.
    Greengard, L.F., Huang, J.: J. Comput. Phys. 180, 642–658 (2002)Google Scholar
  5. 5.
    Plaks, A., Tsukerman, I., Friedman, G., Yellen, B.: IEEE Trans. Magn. 39, 1436–1439 (2003)Google Scholar
  6. 6.
    Tsukerman, I.: IEEE Trans. Magn. 31, 1472–1475 (1995)Google Scholar
  7. 7.
    Strouboulis, T., Babuška, I., Copps, K.: Comput. Meth. Appl. Mech. Eng. 181, 43–69 (2000)Google Scholar
  8. 8.
    Proekt, L., Tsukerman, I.: IEEE Trans. Magn. 38, 741–744 (2002)Google Scholar
  9. 9.
    Basermann, A., Tsukerman, I.: Parallel generalized finite element method for magnetic multiparticle problems. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds.) VECPAR 2004. LNCS, vol. 3402, pp. 325–339. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Fushiki, M.: J. Chem. Phys. 97, 6700–6713 (1992)Google Scholar
  11. 11.
    Dobnikar, J., Haložan, D., Brumen, M., von Grünberg, H.H., Rzehak, R.: Comput. Phys. Comm. 159, 73–92 (2004)Google Scholar
  12. 12.
    Deserno, M., von Grünberg, H.H.: Phys. Review E 66, 15 (2002)Google Scholar
  13. 13.
    Bathe, M., Grodzinsky, A.J., Tidor, B., Rutledge, G.C.: J. of Chem. Phys. 121, 7557–7561 (2004)Google Scholar
  14. 14.
    Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, New York (1996)MATHGoogle Scholar
  15. 15.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Saad, Y., Sosonkina, M.: SIAM J. Sci. Comput. 21, 1337–1356 (1999)Google Scholar
  17. 17.
    Li, Z., Saad, Y., Sosonkina, M.: Numer. Lin. Alg. Appl. 10, 485–509 (2003)Google Scholar
  18. 18.
    Sosonkina, M., Saad, Y., Cai, X.: Future Gen. Comput. Systems 20, 489–500 (2004)Google Scholar
  19. 19.
    Saad, Y., Suchomel, B.: Numer. Lin. Alg. Appl. 9, 359–378 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Masha Sosonkina
    • 1
  • Igor Tsukerman
    • 2
  1. 1.Ames Laboratory/DOEIowa State UniversityAmesUSA
  2. 2.Department of Electrical and Computer EngineeringThe University of AkronAkronUSA

Personalised recommendations