Tighter Approximation Bounds for LPT Scheduling in Two Special Cases

  • Annamária Kovács
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3998)


Q||C max denotes the problem of scheduling n jobs on m machines of different speeds such that the makespan is minimized. In the paper two special cases of Q||C max are considered: Case I, when m–1 machine speeds are equal, and there is only one faster machine; and Case II, when machine speeds are all powers of 2. Case I has been widely studied in the literature, while Case II is significant in an approach to design so called monotone algorithms for the scheduling problem.

We deal with the worst case approximation ratio of the classic list scheduling algorithm ’Longest Processing Time (LPT)’. We provide an analysis of this ratio Lpt/Opt for both special cases: For one fast machine, a tight bound of \((\sqrt{3}+1)/2\approx 1.366\) is given. When machine speeds are powers of 2 (2-divisible machines), we show that in the worst case 41/30 <Lpt/Opt<42/30=1.4.

To our knowledge, the best previous lower bound for both problems was 4/3–ε, whereas the best known upper bounds were 3/2–1/2m for Case I [6] resp. 3/2 for Case II [10]. For both the lower and the upper bound, the analysis of Case II is a refined version of that of Case I.


Completion Time Machine Speed List Schedule Longe Processing Time Optimum Makespan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. 42nd IEEE Symp. on Found. of Comp. Sci (FOCS), pp. 482–491 (2001)Google Scholar
  2. 2.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9(1), 91–103 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM Journal on Computing 7(1), 1–17 (1978)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dobson, G.: Scheduling independent tasks on uniform processors. SIAM Journal on Computing 13(4), 705–716 (1984)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing 16(3), 554–560 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gonzalez, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM Journal on Computing 6(1), 155–166 (1977)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comp. 17(3), 539–551 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM 23, 317–327 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kovács, A.: Tighter approximation bounds for LPT scheduling in two special cases, Extended version:
  10. 10.
    Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–627. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Li, R., Shi, L.: An on-line algorithm for some uniform processor scheduling. SIAM Journal on Computing 27(2), 414–422 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Liu, J.W.S., Liu, C.L.: Bounds on scheduling algorithms for heterogeneous computing systems. In: Proc. Intern. Feder. of Inf. Proc. Soc, pp. 349–353 (1974)Google Scholar
  13. 13.
    Mireault, P., Orlin, J.B., Vohra, R.V.: A parametric worst case analysis of the LPT heuristic for two uniform machines. Oper. Res. 45(1), 116–125 (1997)MATHCrossRefGoogle Scholar
  14. 14.
    Johnson, D.S., Garey, M.R.: Computers and Intractability; A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  15. 15.
    Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approximation mechanisms for scheduling related machines. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Annamária Kovács
    • 1
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations