Advertisement

The Range Constraint: Algorithms and Implementation

  • Christian Bessiere
  • Emmanuel Hebrard
  • Brahim Hnich
  • Zeynep Kiziltan
  • Toby Walsh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3990)

Abstract

We recently proposed a simple declarative language for specifying a wide range of counting and occurrence constraints. The language uses just two global primitives: the Range constraint, which computes the range of values used by a set of variables, and the Roots constraint, which computes the variables mapping onto particular values. In order for this specification language to be executable, propagation algorithms for the Range and Roots constraints should be developed. In this paper, we focus on the study of the Range constraint. We propose an efficient algorithm for propagating the Range constraint. We also show that decomposing global counting and occurrence constraints using Range is effective and efficient in practice.

Keywords

Integer Variable Global Constraint Binary Constraint Range Constraint Residual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. Prentice Hall, Upper Saddle River (1993)MATHGoogle Scholar
  2. 2.
    Beldiceanu, N.: Pruning for the minimum constraint family and for the number of distinct values constraint family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 211–224. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Technical Report T2005:08, Swedish Institute of Computer Science, Kista, Sweden (May 2005)Google Scholar
  4. 4.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathl. Comput. Modelling 20(12), 97–123 (1994)CrossRefMATHGoogle Scholar
  5. 5.
    Beldiceanu, N., Katriel, I., Thiel, S.: Filtering algorithms for the same and usedby constraints. MPI Technical Report MPI-I-2004-1-001 (2004)Google Scholar
  6. 6.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The Range and Roots constraints: Specifying counting and occurrence problems. In: Proceedings IJCAI 2005, Edinburgh, Scotland, pp. 60–65 (2005)Google Scholar
  7. 7.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The Range and Roots constraints: some applications. Technical Report 2006-003, COMIC (January 2006)Google Scholar
  8. 8.
    Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In: Proceedings AAAI 2004, San Jose CA, pp. 112–117 (to appear, 2004)Google Scholar
  9. 9.
    Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., Wu, J.C.K.: Increasing constraint propagation by redundant modeling: an experience report. Constraints 4, 167–192 (1999)CrossRefMATHGoogle Scholar
  10. 10.
    ILOG. Reference and User Manual. ILOG Solver 5.3, ILOG S.A. (2002)Google Scholar
  11. 11.
    Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Prosser, P.: An empirical study of phase transition in binary constraint satisfaction problems. Artificial Intelligence 81, 81–109 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings AAAI 1994, Seattle WA, pp. 362–367 (1994)Google Scholar
  15. 15.
    Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings AAAI 1996, Portland OR, pp. 209–215 (1996)Google Scholar
  16. 16.
    Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Bessiere
    • 1
  • Emmanuel Hebrard
    • 2
  • Brahim Hnich
    • 3
  • Zeynep Kiziltan
    • 4
  • Toby Walsh
    • 2
  1. 1.LIRMM, CNRS/University of MontpellierFrance
  2. 2.NICTA and UNSWSydneyAustralia
  3. 3.Izmir University of EconomicsIzmirTurkey
  4. 4.University of BolognaItaly

Personalised recommendations