The postproduction test of integrated circuits is crucial to ensure a high quality of the final product. This test is carried out by checking the correct response of the chip under predefined input stimuli – or test patterns. These patterns are calculated by algorithms for Automatic Test Pattern Generation (ATPG).

The basic concepts and algorithms for ATPG are reviewed in this chapter. Then, an advanced SAT-based ATPG tool is introduced and emprically evaluated.


Test Pattern Conjunctive Normal Form Automatic Test Pattern Generation Conjunctive Normal Form Formula Test Pattern Generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, M.F., Safarpour, S., Veneris, A., Abadir, M.S., Drechsler, R.: Post-verification debugging of hierarchical designs. In: Int’l. Conf. on CAD, pp. 871–876 (2005)Google Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Boolean Satisfiability Research Group at Princeton University. ZCHAFF (2004), http://www.princeton.edu/~chaff/zchaff.html
  4. 4.
    Brand, D.: Redundancy and don’t cares in logic synthesis. IEEE Trans. on Comp. 32(10), 947–952 (1983)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Breuer, M.A., Friedman, A.D.: Diagnosis & reliable design of digital systems. Computer Science Press, Rockville (1976)CrossRefMATHGoogle Scholar
  6. 6.
    Cook, S.A.: The complexity of theorem proving procedures. In: ACM Symposium on Theory of Computing, vol. 3, pp. 151–158 (1971)Google Scholar
  7. 7.
    Davis, M., Logeman, G., Loveland, D.: A machine program for theorem proving. Comm. of the ACM 5, 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 506–521 (1960)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Drechsler, R.: Advanced Formal Verification. Kluwer Academic Publishers, Dordrecht (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Drechsler, R.: Using synthesis techniques in SAT solvers. In: ITG/GI/GMM-Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, pp. 165–173 (2004)Google Scholar
  11. 11.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Eichelberger, E.B., Williams, T.W.: A logic design structure for LSI testability. In: Design Automation Conf., pp. 462–468 (1977)Google Scholar
  14. 14.
    Fey, G., Safarpour, S., Veneris, A., Drechsler, R.: On the relation between simulation-based and SAT-based diagnosis. In: Design, Automation and Test in Europe (2006)Google Scholar
  15. 15.
    Fey, G., Shi, J., Drechsler, R.: Efficiency of multiple-valued encoding in SAT-based ATPG. In: Int’l. Symp. on Multi-Valued Logic (2006)Google Scholar
  16. 16.
    Friedman, A.D.: Easily testable iterative systems. IEEE Trans. on Comp. 22, 1061–1064 (1973)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. IEEE Trans. on Comp. 32, 1137–1144 (1983)CrossRefGoogle Scholar
  18. 18.
    Goel, P.: An implicit enumeration algorithm to generate tests for combinational logic. IEEE Trans. on Comp. 30, 215–222 (1981)CrossRefMATHGoogle Scholar
  19. 19.
    Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: Design, Automation and Test in Europe, pp. 142–149 (2002)Google Scholar
  20. 20.
    Hsieh, E.R., Rasmussen, R.A., Vidunas, L.J., Davis, W.T.: Delay test generation. In: Design Automation Conf., pp. 486–491 (1977)Google Scholar
  21. 21.
    Jha, N., Gupta, S.: Testing of Digital Systems. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  22. 22.
    Jin, H., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 211–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Kodandapani, K.L., Pradhan, D.K.: Undetectability of bridging faults and validity of stuck-at fault test sets. IEEE Trans. on Comp. C-29(1), 55–59 (1980)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Trans. on CAD 21(12), 1377–1394 (2002)CrossRefGoogle Scholar
  25. 25.
    Kunz, W.: HANNIBAL: An efficient tool for logic verification based on recursive learning. In: Int’l. Conf. on CAD, pp. 538–543 (1993)Google Scholar
  26. 26.
    Kunz, W., Pradhan, D.K.: Recursive learning: A new implication technique for efficient solutions of CAD problems: Test, verification and optimization. IEEE Trans. on CAD 13(9), 1143–1158 (1994)CrossRefGoogle Scholar
  27. 27.
    Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans. on CAD 11, 4–15 (1992)CrossRefGoogle Scholar
  28. 28.
    Lee, H.K., Ha, D.S.: Atalanta: An efficient ATPG for combinational circuits. Technical Report 12, Dep. of Electrical Engineering, Virginia Polytechnic Institute and State University (1993)Google Scholar
  29. 29.
    Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Marques-Silva, J.P., Sakallah, K.A.: Robust search algorithms for test pattern generation. Technical Report RT/02/97, Dept. of Informatics, Technical University of Lisbon, Lisbon, Protugal (January 1997)Google Scholar
  31. 31.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. on Comp. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conf., pp. 530–535 (2001)Google Scholar
  33. 33.
    Niermann, T.M., Patel, J.H.: HITEC: A test generation package for sequential circuits. In: European Conf. on Design Automation, pp. 214–218 (1991)Google Scholar
  34. 34.
    Roth, J.P.: Diagnosis of automata failures: A calculus and a method. IBM J. Res. Dev. 10, 278–281 (1966)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Schulz, M., Trischler, E., Sarfert, T.: SOCRATES: A highly efficient automatic test pattern generation system. In: Int’l. Test Conf., pp. 1016–1026 (1987)Google Scholar
  36. 36.
    Sentovich, E., Singh, K., Lavagno, L., Moon, Ch., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: SIS: A system for sequential circuit synthesis. Technical report, University of Berkeley (1992)Google Scholar
  37. 37.
    Shi, J., Fey, G., Drechsler, R., Glowatz, A., Hapke, F., Schlöffel, J.: PASSAT: Effcient SAT-based test pattern generation for industrial circuits. In: IEEE Annual Symposium on VLSI, pp. 212–217 (2005)Google Scholar
  38. 38.
    Shi, J., Fey, G., Drechsler, R., Glowatz, A., Schlöffel, J., Hapke, F.: Experimental studies on SAT-based test pattern generation for industrial circuits. In: Int’l. Conf. on ASIC, pp. 967–970 (2005)Google Scholar
  39. 39.
    Smith, A., Veneris, A., Viglas, A.: Design diagnosis using Boolean satisfiability. In: ASP Design Automation Conf., pp. 218–223 (2004)Google Scholar
  40. 40.
    Smith, G.L.: Model for delay faults based upon paths. In: Int’l. Test Conf., pp. 342–349 (1985)Google Scholar
  41. 41.
    Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test generation using satisfiability. IEEE Trans. on CAD 15, 1167–1176 (1996)CrossRefGoogle Scholar
  42. 42.
    Storey, T.M., Barry, J.W.: Delay test simulation. In: Design Automation Conf., pp. 492–494 (1977)Google Scholar
  43. 43.
    Tafertshofer, P., Ganz, A.: SAT based ATPG using fast justification and propagation in the implication graph. In: Int’l. Conf. on CAD, pp. 139–146 (1999)Google Scholar
  44. 44.
    Tafertshofer, P., Ganz, A., Henftling, M.: A SAT-based implication engine for efficient ATPG, equivalence checking, and optimization of netlists. In: Int’l. Conf. on CAD, pp. 648–655 (1997)Google Scholar
  45. 45.
    Williams, M.J.Y., Angell, J.B.: Enhancing testability of large-scale integrated circuits via test points and additional logic. IEEE Trans. on Comp. C-22(1), 46–60 (1973)CrossRefGoogle Scholar
  46. 46.
    Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Int’l. Conf. on CAD, pp. 279–285 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rolf Drechsler
    • 1
  • Görschwin Fey
    • 1
  1. 1.Institute of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations