A Hybrid Benders’ Decomposition Method for Solving Stochastic Constraint Programs with Linear Recourse

  • S. Armagan Tarim
  • Ian Miguel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3978)


We adopt Benders’ decomposition algorithm to solve scenario-based Stochastic Constraint Programs (SCPs) with linear recourse. Rather than attempting to solve SCPs via a monolithic model, we show that one can iteratively solve a collection of smaller sub-problems and arrive at a solution to the entire problem. In this approach, decision variables corresponding to the initial stage and linear recourse actions are grouped into two sub-problems. The sub-problem corresponding to the recourse action further decomposes into independent problems, each of which is a representation of a single scenario. Our computational experience on stochastic versions of the well-known template design and warehouse location problems shows that, for linear recourse SCPs, Benders’ decomposition algorithm provides a very efficient solution method.


Constraint Program Master Problem Chance Constraint News Vendor Problem Stochastic Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beasley, J.E.: An algorithm for solving large capacitated warehouse location problems. European Journal of Operational Research 33, 314–325 (1988)CrossRefMATHGoogle Scholar
  2. 2.
    Benders, J.F.: Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numerische Mathematik 4, 238–252 (1962)CrossRefMATHGoogle Scholar
  3. 3.
    Benoist, T., Gaudin, E., Rottembourg, B.: Constraint Programming Contribution to Benders Decomposition: A Case Study. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 603–617. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Eremin, A., Wallace, M.: Hybrid Benders Decomposition Algorithms in Constraint Logic Programming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 1–15. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Geoffrion, A.M.: Generalized Benders decomposition. Journal of Optimization Theory and Applications 10, 237–260 (1972)CrossRefMATHGoogle Scholar
  6. 6.
    Holmberg, K., Ronnqvist, M., Yuan, D.: An exact algorithm for the capacitated facility location problem with single sourcing. European Journal of Operational Research 113, 544–559 (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)MATHGoogle Scholar
  8. 8.
    ILOG Inc.: OPL Studio 3.7, Studio User’s Manual (2003)Google Scholar
  9. 9.
    Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems. INFORMS Journal on Computing 13, 258–276 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Khumawala, B.M.: An Efficient Branch-Bound Algorithm for the Warehouse Location Problem. Management Science 18, 718–731 (1972)CrossRefMATHGoogle Scholar
  11. 11.
    Krarup, J., Pruzan, P.M.: The simple plant location problem: Survey and synthesis. European Journal of Operational Research 12, 36–81 (1983)CrossRefMATHGoogle Scholar
  12. 12.
    Manandhar, S., Tarim, S.A., Walsh, T.: Scenario-Based Stochastic Constraint Programming. In: Proceedings of IJCAI-2003, Acapulco, Mexico, pp. 257–262 (2003)Google Scholar
  13. 13.
    Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. John Wiley and Sons, Chichester (1990)MATHGoogle Scholar
  14. 14.
    Proll, L., Smith, B.M.: Integer linear programming and constraint programming approaches to a template design problem. INFORMS Journal on Computing 10(3), 265–275 (1998)CrossRefMATHGoogle Scholar
  15. 15.
    Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based Approach. Constraints 11(1) (2006)Google Scholar
  16. 16.
    Thorsteinsson, E.S.: Branch-and-Check: A Hybrid Framework Integrating Mixed Integer Programming and Constraint Logic Programming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 16–30. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Xia, Q., Eremin, A., Wallace, M.: Problem Decomposition for Traffic Diversions. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 348–363. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Armagan Tarim
    • 1
  • Ian Miguel
    • 2
  1. 1.Cork Constraint Computation CentreUniversity College CorkCorkIreland
  2. 2.School of Computer ScienceUniversity of St.AndrewsSt.AndrewsScotland

Personalised recommendations