In this paper we solve the maximum lifetime routing (MLR) problem for a sensor network by joint optimizing routing and data aggregation. We present a smoothing method to overcome the nondifferentiability of the objective function. By exploiting the special structure of the network, we derive the necessary and sufficient conditions to achieve the optimality. Based on these conditions, a gradient descent algorithm is designed for its solution. The proposed algorithm is shown to converge to the optimal value efficiently under all network configurations. The incorporation of optimal routing and data aggregation is shown via many examples to provide significant improvement of the network lifetime.


Power Consumption Sensor Network Sensor Node Wireless Sensor Network Source Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proc. International Conference on System Sciences (2000)Google Scholar
  2. 2.
    Singh, S., Woo, M., Raghavendra, C.S.: Power-aware routing in mobile ad hoc networks. In: MobiCom 1998, pp. 181–190 (1998)Google Scholar
  3. 3.
    Meng, T.H., Rodoplu, V.: Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 1333–1344 (August 1999)Google Scholar
  4. 4.
    Chang, J.-H., Tassiulas, L.: Routing for maximum system lifetime in wireless ad-hoc networks. In: Proc. of Allerton Conference on Communication, Control and Computing (September 1999)Google Scholar
  5. 5.
    Chang, J.-H., Tassiulas, L.: Energy conserving routing in wireless ad-hoc networks. In: Infocom 2000, pp. 22–31 (2000)Google Scholar
  6. 6.
    Sankar, A., Liu, Z.: Maximum lifetime routing in wireless ad-hoc networks. In: Infocom 2004 (March 2004)Google Scholar
  7. 7.
    Madan, R., Lall, S.: Distributed algorithms for maximum lifetime routing in wireless sensor networks. In: Global Telecommunications Conference (GLOBECOM 2004), IEEE, vol. 2 (November 2004)Google Scholar
  8. 8.
    Pan, J., Thomas Hou, Y., Cai, L., Shi, Y., Shen, S.X.: Topology control for wireless sensor networks. In: MobiCom 2003, pp. 286–299 (2003)Google Scholar
  9. 9.
    Kalpakis, K., Dasgupta, K., Namjoshi, P.: Maximum lifetime data gathering and aggregation in wireless sensor networks. In: Proc of ICN 2002 (August 2002)Google Scholar
  10. 10.
    Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on routing with compression in wireless sensor networks. In: IPSN 2004, pp. 28–35. ACM Press, Berkeley (2004)Google Scholar
  11. 11.
    Cristescu, R., Beferull-Lozano, B., Vetterli, M.: On network correlated data gathering. In: Infocom 2004, Hong Kong (2004)Google Scholar
  12. 12.
    Gastpar, M., Vetterli, M.: Source-channel communication in sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 162–177. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Scaglione, A., Servetto, S.D.: On the interdependence of routing and data compression in multi-hop sensor networks. In: MobiCom 2002, pp. 140–147. ACM Press, Atlanta (2002)Google Scholar
  14. 14.
    Vuran, M.C., Akan, O.B., Akyildiz, I.F.: Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks 45(3), 245 (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric mobile ad-hoc routing. In: Proc. of DIALM 1999, pp. 24–33 (September 2002)Google Scholar
  16. 16.
    Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad hoc networks. IEEE Network Magazine 15(6), 30–39 (2001)CrossRefGoogle Scholar
  17. 17.
    Ben-Tal, A., Teboulle, M.: A smoothing technique for nondifferentiable optimization problems. In: Proceedings of the international seminar on Optimization, pp. 1–11. Springer, New York (1988)Google Scholar
  18. 18.
    Li, X.: An entropy-based aggregate method for minimax optimization. Engineering Optimization 18, 277–285 (1992)CrossRefGoogle Scholar
  19. 19.
    Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program. 71(1), 51–69 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Qi, L., Sun, D.: Smoothing functions and a smoothing newton method for complementarity and variational inequality problems. Journal of Optimization Theory and Applications 113, 121–147 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gallager, R.G.: A minimum delay routing algorithm using distributed computation. IEEE Transaction on Communications 25(1), 73–85 (1977)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific (1997)Google Scholar
  23. 23.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Cunqing Hua
    • 1
  • Tak-Shing Peter Yum
    • 1
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongShatin, N.T., Hong Kong

Personalised recommendations