Advertisement

Abstract

We propose a new methodology, Restored, for model-based storage and regeneration of TCP traces. Restored provides significant data compression by exploiting semantics of TCP. Experiments show that Restored can achieve over 10,000-fold compression ratios for some really large input connections, while still being able to recover several structural and QoS measures.

Keywords

Macroscopic Model Congestion Window Packet Stream Inversion Spectrum Packet Reordering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cisco Systems netflow, Available at, http://www.cisco.com/warp/public/732/Tech/netflow
  2. 2.
    Stallings, W.: SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley, Reading (1999)Google Scholar
  3. 3.
    Cranor, C., et al.: Gigascope: A stream database for network applications. In: Proc. SIGMOD 2003, pp. 647–651 (2003)Google Scholar
  4. 4.
    Leland, W., et al.: On the self-similar nature of Ethernet traffic (extended version). ACM/IEEE Transactions on Networking 2(1), 1–15 (1994)CrossRefGoogle Scholar
  5. 5.
    Riedi, R.H., et al.: A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory 45(3), 992–1018 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Figueiredo, D., et al.: On TCP and self-similar traffic. J. Perf. Evaluation (2005) (to appear)Google Scholar
  7. 7.
    Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: Internet traffic tends to Poisson and independent as the load increases. Bell Labs, Murray Hill, NJ, Tech. Rep. (2001)Google Scholar
  8. 8.
    Figueiredo, D., et al.: On the autocorrelation structure of TCP traffic. Computer Networks 40(3), 339–361 (2002)CrossRefGoogle Scholar
  9. 9.
    Bennett, J., et al.: Packet reordering is not pathological network behavior. IEEE/ACM Transactions on Networking 7(6), 789–798 (1999)CrossRefGoogle Scholar
  10. 10.
    Bellardo, J., Savage, S.: Measuring packet reordering. In: Proc. ACM SIGCOMM Internet Measurement Workshop, pp. 97–105 (November 2002)Google Scholar
  11. 11.
    Fang, W., Peterson, L.: Internet-AS traffic patterns and their implications. In: Proc. IEEE GLOBECOM Conf., pp. 1859–1868 (1999)Google Scholar
  12. 12.
    Feldmann, A., et al.: Deriving traffic demands for operational IP networks: Methodology and experience. In: Proc. ACM SIGCOMM, pp. 257–270 (2000)Google Scholar
  13. 13.
    Estan, C., Varghese, G.: New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice. ACM TOCS 21(3), 270–313 (2003)CrossRefGoogle Scholar
  14. 14.
    Park, K., Willinger, W. (eds.): Self-similar network traffic and performance evaluation. Wiley, Chichester (2000)Google Scholar
  15. 15.
    Cao, J., et al.: On the nonstationarity of Internet traffic. In: Proc. ACM SIGMETRICS (2001)Google Scholar
  16. 16.
    Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control, p. 33. Holden-Day (1976)Google Scholar
  18. 18.
    Hogg, R., Craig, A.: Introduction to Mathematical Statistics. Macmillan, Basingstoke (1995)MATHGoogle Scholar
  19. 19.
    Peterson, L., Davie, B.: Computer Networks. A Systems Approach. M. Kauffman, San Francisco (2000)MATHGoogle Scholar
  20. 20.
    Hansson, A., Istrate, G., Kasiviswanathan, S.: Combinatorics of TCP reordering. Submitted to a special issue of Journal of Combinatorial Optimization (July 2005)Google Scholar
  21. 21.
    Jaiswal, S., et al.: Inferring TCP connection characteristics through passive measurements. In: Proc. IEEE INFOCOM (2004)Google Scholar
  22. 22.
    Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Computing Surveys 24(4), 441–476 (1992)CrossRefGoogle Scholar
  23. 23.
    Jayasumana, A., et al.: Reorder density and reorder buffer-occupancy density—metrics for packet reordering measurements. IETF IP Performance Metrics WG, Available at, http://www.ietf.org/internet-drafts/draft-jayasumana-reorder-density-04.txt
  24. 24.
    Jayasumana, A., et al.: RD: A formal, comprehensive metric for packet reordering. In: Proc. IFIP Networking (2005)Google Scholar
  25. 25.
    Veres, A., Boda, M.: The chaotic nature of TCP congestion control. In: Proc. IEEE INFOCOM 2000, pp. 1715–1723 (2000)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Gabriel Istrate
    • 1
  • Anders Hansson
    • 1
  • Sunil Thulasidasan
    • 1
  • Madhav Marathe
    • 2
  • Chris Barrett
    • 2
  1. 1.CCS-5Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Virginia Bioinformatics InstituteBlacksburgUSA

Personalised recommendations