Extended Resolution Proofs for Conjoining BDDs

  • Carsten Sinz
  • Armin Biere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3967)


We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.


Conjunctive Normal Form Cache Line Binary Decision Diagram Trace Format Empty Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7 (1960)Google Scholar
  2. 2.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7) (1962)Google Scholar
  3. 3.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability. In: Proc. ICCAD 1996 (1996)Google Scholar
  4. 4.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)Google Scholar
  5. 5.
    Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002 (2002)Google Scholar
  6. 6.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2) (2003)Google Scholar
  9. 9.
    Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Proc. ASE 2003 (2003)Google Scholar
  10. 10.
    Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1) (2003)Google Scholar
  11. 11.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proc. POPL 2005 (2005)Google Scholar
  13. 13.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. DATE 2003 (2003)Google Scholar
  15. 15.
    Motter, D.B., Markov, I.L.: A compressed breadth-first search for satisfiability. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, p. 29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M.R., Vanfleet, W.M.: SBSAT: a state-based, BDD-based satisfiability solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Damiano, R., Kukula, J.: Checking satisfiability of a conjunction of BDDs. In: DAC 2003 (2003)Google Scholar
  18. 18.
    Huang, J., Darwiche, A.: Toward good elimination orders for symbolic SAT solving. In: Proc. ICTAI 2004 (2004)Google Scholar
  19. 19.
    Pan, G., Vardi, M.Y.: Search vs. Symbolic techniques in satisfiability solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Jin, H., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 211–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. 35(8) (1986)Google Scholar
  22. 22.
    Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-Putnam procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)CrossRefGoogle Scholar
  23. 23.
    Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2) (2003)Google Scholar
  24. 24.
    Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)Google Scholar
  25. 25.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)Google Scholar
  26. 26.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic (1970)Google Scholar
  27. 27.
    Cook, S.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4) (1976)Google Scholar
  28. 28.
    Haken, A.: The intractability of resolution. Theoretical Comp. Science 39 (1985)Google Scholar
  29. 29.
    Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)Google Scholar
  30. 30.
    Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of boolean satisfiability in the presence of symmetry. IEEE Trans. on Comp. Aided Design 22(9) (2003)Google Scholar
  31. 31.
    Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Applied Mathematics 130(2) (2003)Google Scholar
  32. 32.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Aloul, F., Markov, I., Sakallah, K.: FORCE: A fast and easy–to–implement variable-ordering heuristic. In: ACM Great Lakes Symp. on VLSI (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carsten Sinz
    • 1
  • Armin Biere
    • 1
  1. 1.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria

Personalised recommendations