Capturing an Intruder in the Pyramid

  • Pooya Shareghi
  • Navid Imani
  • Hamid Sarbazi-Azad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3967)


In this paper, we envision a solution for the problem of capturing an intruder in one of the most popular interconnection topologies, namely the pyramid. A set of agents collaborate to capture a hostile intruder in the network. While the agents can move in the network one hop at a time, the intruder is assumed to be arbitrarily fast, i.e. it can traverse any number of nodes contiguously as far as there are no agents in those nodes. Here we consider a new version of the problem where each agent can replicate new agents when needed, i.e. the algorithm starts with a single agent and new agents are created on demand. In particular, we propose two different algorithms on the pyramid network and we will later discuss about the merits of each algorithm based on some performance criteria.


Neighboring Node Intrusion Detection Mobile Agent Level Mesh Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foukia, N., Hulaas, J.G., Harms, J.: Intrusion Detection with Mobile Agents. In: Proc. of the 11th Annual Conference of the Internet Society, INET 2001 (2001)Google Scholar
  2. 2.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an Intruder by Mobile Agents. In: Proc. of SPAA 2002, Winnipeg, Manitoba, Canada (2002)Google Scholar
  3. 3.
    Asaka, M., Okazawa, S., Taguchi, A., Goto, S.: A method of tracing intruders by use of mobile agents. In: Proc. of the 9th Annual Conference of the Internet Society, INET 1999 (1999)Google Scholar
  4. 4.
    Helmer, G.G., Wong, J.S.K., Honavar, V., Miller, L.: Intelligent agents for intrusion detection. In: IEEE Information Technology Conference, pp. 121–124 (1998)Google Scholar
  5. 5.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous Search in the Hyperdiamond for Capturing an Intruder. In: Proc. 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Denver, Colorado (2005)Google Scholar
  6. 6.
    Breisch, R.: An intuitive approach to speleology. Southwestern Cavers 6, 72–78 (1967)Google Scholar
  7. 7.
    Parsons, T.D.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs, pp. 426–441. Springer, Heidelberg (1976)Google Scholar
  8. 8.
    Parsons, T.D.: The search number of a connected graph. In: Proc. Ninth Southeastern Conf. Combinatorics, Graph Theory and Computing, Winnipeg. Congress, vol. XXI, pp. 549–554 (1978)Google Scholar
  9. 9.
    Alspach, B.: Searching and Sweeping Graphs: A Brief Survey. (September 2004), accessible at
  10. 10.
    Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–245 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cao, F., Hsu, D.F.: Fault-tolerance properties of pyramid networks. IEEE Transactions on Computers 48(1), 88–93 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sarbazi-Azad, H., Ould-Khaoua, M., Mackenzie, L.M.: Algorithmic construction of Hamiltonians in pyramids. Information Processing Letters 80, 75–79 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dingle, A., Sudborough, H.: Simulation of binary trees and x-trees on pyramid networks. In: Proc. IEEE Symp. on Parallel & Distributed Processing, May 1992, pp. 220–229 (1992)Google Scholar
  14. 14.
    Leighton, F.T.: Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufmann, San Francisco (1992)MATHGoogle Scholar
  15. 15.
    Jenq, J.F., Sahni, S.: Image Shrinking and Expanding on a Pyramid. IEEE Transactions On Parallel and Distributed Systems 4(11), 1291–1296 (1993)CrossRefMATHGoogle Scholar
  16. 16.
    Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1988)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Demirbas, M., Arora, A., Gouda, M.: A pursuer-evader game for sensor networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Yospanya, P., Laekhanukit, B., Nanongkai, D., Fakcharoenphol, J.: Detecting and cleaning intruders in sensor networks. In: Proceedings of the National Comp. Sci. and Eng. Conf. (NCSEC 2004) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pooya Shareghi
    • 1
  • Navid Imani
    • 1
  • Hamid Sarbazi-Azad
    • 1
  1. 1.IPM School of Computer Science, and Sharif University of TechnologyTehranIran

Personalised recommendations