Approximate Methods for Constrained Total Variation Minimization

  • Xiaogang Dong
  • Ilya Pollak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3967)


Constrained total variation minimization and related convex optimization problems have applications in many areas of image processing and computer vision such as image reconstruction, enhancement, noise removal, and segmentation. We propose a new method to approximately solve this problem. Numerical experiments show that this method gets close to the globally optimal solution, and is 15-100 times faster for typical images than a state-of-the-art interior point method. Our method’s denoising performance is comparable to that of a state-of-the-art noise removal method of [4]. Our work extends our previously published algorithm for solving the constrained total variation minimization problem for 1D signals [13] which was shown to produce the globally optimal solution exactly in O(Nlog N) time where N is the number of data points.


Electrical Impedance Tomography Noisy Image Interior Point Method Noise Removal Total Variation Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear Algebra Appl. 9, 347–358 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Combettes, P.L., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. Image Proc. 11(11), 1295–1304 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  8. 8.
    Dobson, D.C., Santosa, F.: An image-enhancement technique for electrical impedance tomography. Inverse Problems 10, 317–334 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dong, X., Pollak, I.: Multiscale segmentation with vector-valued nonlinear diffusions on arbitrary graphs. IEEE Trans. Image Proc. (to appear)Google Scholar
  10. 10.
    Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT as an overcomplete denoising tool. In: Proc. Int. TICSP Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2005, Riga, Latvia (June 2005)Google Scholar
  11. 11.
    Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Proc. 5(6), 987–995 (1996)CrossRefGoogle Scholar
  13. 13.
    Pollak, I., Willsky, A.S., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Trans. Signal Proc. 53(2), 484–498 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pollak, I., Willsky, A.S., Krim, H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. Image Proc. 9(2), 256–266 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Proc. 12(11), 1338–1351 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sauer, K., Bouman, C.: Bayesian estimation of transmission tomograms using segmentation based optimization. IEEE Trans. on Nuclear Science 39(4), 1144–1152 (1992)CrossRefGoogle Scholar
  18. 18.
    Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optimization Methods and Software 11(12), 141–182 (2000)MathSciNetMATHGoogle Scholar
  19. 19.
    Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Proc. 7(6) (June 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaogang Dong
    • 1
  • Ilya Pollak
    • 1
  1. 1.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations