Functional Equations in Shostak Theories

  • Sergey P. Shlepakov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3967)


We consider Shostak theories introduced in [1]. The class of Shostak theories consists of decidable first order equality theories, specified by two algorithms: a canoniser and a solver. A canoniser calculates the normal form of a term. A solver tests whether an equality can be reduced to an equivalent substitution and constructs this substitution when it exists. The examples of Shostak theories are linear arithmetics of integers and rational numbers, theories of lists, arrays, ets.[2].


Order Equation Order Variable Function Symbol Horn Clause Automate Deduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31, 1–12 (1984)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Manna, Z., Zarba, C.G.: Combining decision procedures. In: Aichernig, B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 381–422. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Krstić, S., Conchon, S.: Canonization for disjoint unions of theories. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 197–211. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Ganzinger, H.: Shostak light. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392, pp. 332–346. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Rueß, H., Shankar, N.: Deconstructing Shostak. In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science. Boston, Massachusetts, USA, pp. 19–28. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sergey P. Shlepakov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations