Advertisement

Incremental Branching Programs

Extended Abstract
  • Anna Gál
  • Michal Koucký
  • Pierre McKenzie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3967)

Abstract

We propose a new model of restricted branching programs which we call incremental branching programs. We show that syntactic incremental branching programs capture previously studied structured models of computation for the problem GEN, namely marking machines [Co74] and Poon’s extension [Po93] of jumping automata on graphs [CoRa80]. We then prove exponential size lower bounds for our syntactic incremental model, and for some other restricted branching program models as well. We further show that nondeterministic syntactic incremental branching programs are provably stronger than their deterministic counterpart when solving a natural NL-complete GEN subproblem. It remains open if syntactic incremental branching programs are as powerful as unrestricted branching programs for GEN problems.

Keywords

Boolean Function Edge Label Monotone Circuit Monotone Boolean Function Exponential Lower Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BaMc91]
    Barrington, D., McKenzie, P.: Oracle branching programs and Logspace versus P. Information and Computation 95, 96–115 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. [BJS01]
    Beame, P., Jayram, T.S., Saks, M.E.: Time-Space Tradeoffs for Branching Programs. J. Computer and Systems Science 63(4), 542–572 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. [Be81]
    Berkowitz, S.J.: On some relationships between monotone and non-monotone circuit complexity, University of Toronto, Computer Science Department (manuscript, 1981)Google Scholar
  4. [BoCo82]
    Borodin, A., Cook, S.A.: A time-space trade-off for sorting on a general sequential model of computation. SIAM J. on Computing 11(2), 287–297 (1982)MathSciNetCrossRefMATHGoogle Scholar
  5. [BRS93]
    Borodin, A., Razborov, A., Smolensky, R.: On lower bounds for read-k-times branching programs. Computational Complexity 3, 1–18 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. [Co71]
    Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. of the Association for Computing Machinery 18(1), 4–18 (1971)MathSciNetCrossRefMATHGoogle Scholar
  7. [Co74]
    Cook, S.A.: An observation on time-storage trade-off. J. Computer and Systems Science 9(3), 308–316 (1974)MathSciNetCrossRefMATHGoogle Scholar
  8. [CoRa80]
    Cook, S.A., Rackoff, C.W.: Space lower bounds for maze threadability on restricted machines. SIAM J. on Computing 9, 636–652 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. [EPA99]
    Edmonds, J., Poon, C.K., Achlioptas, D.: Tight lower bounds for st-connectivity on the NNJAG model. SIAM J. on Computing 28(6), 2257–2284 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. [GKM05]
    Gál, A., Koucký, M., McKenzie, P.: Incremental branching programs. ECCC TR05-136, 1–18 (2005)Google Scholar
  11. [JoLa77]
    Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. Theoretical Computer Science 3, 105–117 (1977)MathSciNetCrossRefMATHGoogle Scholar
  12. [Ju95]
    Jukna, S.: A note on read-k-times branching programs. RAIRO Theoretical Informatics and Applications 29, 75–83Google Scholar
  13. [KaWi88]
    Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 539–550 (1988); Full version in: SIAM J. on Disc. Math. 3(2), 255–265 (1990)Google Scholar
  14. [PTC77]
    Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Mathematical Systems Theory 10, 239–251 (1977)MathSciNetCrossRefMATHGoogle Scholar
  15. [PaHe70]
    Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of Project MAC Conference on Concurrent Systems and Parallel Computations (June 1970), pp. 119–128. ACM, New Jersey (1970)Google Scholar
  16. [Po93]
    Poon, C.K.: Space bounds for graph connectivity problems on node-named JAGs and node-ordered JAGs. In: Proc. of the 34th IEEE Symp. on the Foundations of Computer Science, pp. 218–227 (1993)Google Scholar
  17. [Ra91]
    Razborov, A.: Lower bounds for deterministic and nondeterministic branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. [RaMc99]
    Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica 19(3), 403–435 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. [Sa70]
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Computer and Systems Science 4(2), 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  20. [We87]
    Wegener, I.: The complexity of Boolean functions. Wiley-Teubner (1987)Google Scholar
  21. [We00]
    Wegener, I.: Branching programs and binary decision diagrams. SIAM Monographs on Discrete Mathematics and Applications (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anna Gál
    • 1
  • Michal Koucký
    • 2
  • Pierre McKenzie
    • 3
  1. 1.University of Texas at AustinUSA
  2. 2.Mathematical InstitutePragueCzech Republic
  3. 3.Université de MontréalCanada

Personalised recommendations