Advertisement

An Algorithm for SAT Without an Extraction Phase

  • Pierluigi Frisco
  • Christiaan Henkel
  • Szabolcs Tengely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)

Abstract

An algorithm that could be implemented at a molecular level for solving the satisfiability of Boolean expressions is presented.

This algorithm, based on properties of specific sets of natural numbers, does not require an extraction phase for the read out of the solution.

Keywords

Extraction Phase Boolean Expression Molecular Computation Hamiltonian Path Problem Hard Computational Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Adleman, L.M.: On constructing a molecular computer. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 27, pp. 1–22. American Mathematical Society (1995)Google Scholar
  3. 3.
    Bae, J.: On generalized subset-sum-distinct sequences. Int. J. Pure Appl. Math. 1(3), 343–352 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution to a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002)CrossRefGoogle Scholar
  5. 5.
    Brauer, A.: On a problem of partitions. Amer. J. Math. 64, 299–312 (1942)CrossRefMATHGoogle Scholar
  6. 6.
    Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proc. Nat. Acad. Sci. USA 97, 13690–13695 (2000)CrossRefGoogle Scholar
  7. 7.
    Frisco, P., Tengely, S.: On unique-sum sets (manuscript in preparation, 2005)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co, San Francisco (1979)MATHGoogle Scholar
  9. 9.
    Jonoska, N., Karl, S.A., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 243–253 (1999)CrossRefGoogle Scholar
  10. 10.
    Khodor, Y., Khodor, J., Knight Jr., T.F.: Experimental conformation of the basic principles of length-only discrimination. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 223. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lipton, R.J.: Using DNA to solve NP-complete problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  12. 12.
    Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., Smith, L.M.: DNA computing on surfaces. Nature 403 (2000)Google Scholar
  13. 13.
    Manca, V., Zandron, C.: A DNA algorithm for 3-SAT(11,20). In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley Pub. Co., Reading (1994)MATHGoogle Scholar
  15. 15.
    Pólya, G.: On picture-writing. Amer. Math. Monthly 63, 689–697 (1956)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sakamoto, K., Gounzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  17. 17.
    Schmidt, K.A., Henkel, C.V., Rozenberg, G., Spaink, H.P.: DNA computing using single-molecule hybridization detection. Nucleic acid research 32, 4962–4968 (2004)CrossRefGoogle Scholar
  18. 18.
    Wilf, H.S.: A circle-of-lights algorithm for the money-changing problem. Amer. Math. Monthly 85(7), 562–565 (1978)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yokomori, T., Sakakibara, Y., Kobayashi, S.: A magic pot: Self-assembly computation revisited. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 418–429. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Yoshida, H., Suyama, A.: Solution to 3-SAT by breadth first search. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 9–22. American Mathematical Society (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pierluigi Frisco
    • 1
  • Christiaan Henkel
    • 2
  • Szabolcs Tengely
    • 3
  1. 1.Dept. of Comp. Sci., School of Eng., C. S. and Math.University of ExeterExeterUK
  2. 2.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  3. 3.Mathematical InstituteLeiden UniversityLeidenThe Netherlands

Personalised recommendations