Towards Practical Biomolecular Computers Using Microfluidic Deoxyribozyme Logic Gate Networks

  • Joseph Farfel
  • Darko Stefanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


We propose a way of implementing a biomolecular computer in the laboratory using deoxyribozyme logic gates inside a microfluidic reaction chamber. We build upon our previous work, which simulated the operation of a flip-flop and an oscillator based on deoxyribozymes in a continuous stirred-tank reactor (CSTR). Unfortunately, using these logic gates in a laboratory-size CSTR is prohibitively expensive, because the reagent quantities needed are too large. This motivated our decision to design a microfluidic system. We would like to use a rotary mixer, so we examine how it operates, show how we have simulated its operation, and discuss how it affects the kinetics of the system. We then show the result of simulating both a flip-flop and an oscillator inside our rotary mixing chamber, and discuss the differences in results from the CSTR setting.


Reaction Chamber Logic Gate Substrate Molecule Product Molecule Rotary Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal of the American Chemical Society 124, 3555–3561 (2002)CrossRefGoogle Scholar
  2. 2.
    Stojanovic, M.N., Stefanovic, D.: Deoxyribozyme-based half adder. Journal of the American Chemical Society 125, 6673–6676 (2003)CrossRefGoogle Scholar
  3. 3.
    Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21, 1069–1074 (2003)CrossRefGoogle Scholar
  4. 4.
    Stojanovic, M.N., Semova, S., Kolpashchikov, D., int Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. Journal of the American Chemical Society 127, 6914–6915 (2005)CrossRefGoogle Scholar
  5. 5.
    Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for a biomolecular computer. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 247–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chou, H.-P., Unger, M.A., Quake, S.R.: A microfabricated rotary pump. Biomedical Microdevices 3, 323–330 (2001)CrossRefGoogle Scholar
  7. 7.
    Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 298, 580–584 (2000)Google Scholar
  8. 8.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)MATHGoogle Scholar
  9. 9.
    Livstone, M.S., Landweber, L.F.: Mathematical considerations in the design of microreactor-based DNA computers. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 180–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gehani, A., Reif, J.: Micro-flow bio-molecular computation. BioSystems 52 (1999)Google Scholar
  11. 11.
    Ledesma, L., Manrique, D., Rodríguez-Patón, A., Silva, A.: A tissue P system and a DNA microfluidic device for solving the shortest common superstring problem (2004)Google Scholar
  12. 12.
    van Noort, D., Gast, F.U., McCaskill, J.S.: DNA computing in microreactors. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Wagler, P., van Noort, D., McCaskill, J.S.: Dna computing in microreactors. In: Proceedings of SPIE, vol. 4590, pp. 6–13 (2001)Google Scholar
  14. 14.
    van Noort, D., Wagler, P., McCaskill, J.S.: Hybrid poly(dimethylsoloxane)-silicon microreactors used for molecular computing. Smart Materials and Structures 11, 756–760 (2004)CrossRefGoogle Scholar
  15. 15.
    van Noort, D., McCaskill, J.S.: Flows in micro fluidic networks: From theory to experiment. Natural Computing 3, 395–410 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chiu, D.T., Pezzoli, E., Wu, H., Stroock, A.D., Whitesides, G.M.: Using three-dimensional microfluidic networks for solving computationally hard problems. Proceedings of the National Academy of Sciences of the USA 98, 2961–2966 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fuerstman, M.J., Deschatelets, P., Kane, R., Schwartz, A., Kenis, P.J.A., Deutsch, J.M., Whitesides, G.M.: Solving mazes using microfluidic networks. Langmuir 19, 4714–4722 (2003)CrossRefGoogle Scholar
  18. 18.
    Vestad, T., Marr, D.W.M., Munakata, T.: Flow resistance for microfluidic logic operations. Applied Physics Letters 84, 5074–5075 (2004)CrossRefGoogle Scholar
  19. 19.
    Foster, K., Parker, G.A. (eds.): Fluidics: Components and circuits. Wiley-Interscience, London and New York (1970)Google Scholar
  20. 20.
    Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298, 580–584 (2002)CrossRefGoogle Scholar
  21. 21.
    Groisman, A., Enzelberger, M., Quake, S.R.: Microfluidic memory and control devices. Science 300, 955–958 (2003)CrossRefGoogle Scholar
  22. 22.
    Hong, J.W., Quake, S.R.: Integrated nanoliter systems. Nature Biotechnology 21, 1179–1183 (2003)CrossRefGoogle Scholar
  23. 23.
    Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab on a Chip 3, 253–259 (2003)CrossRefGoogle Scholar
  24. 24.
    Tice, J.D., Song, H., Lyon, A.D., Ismagilov, R.F.: Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19, 9127–9133 (2003)CrossRefGoogle Scholar
  25. 25.
    Song, H., Tice, J.D., Ismagilov, R.F.: A microfluidic system for controlling reaction networks in time. Angewandte Chemie International Edition 42, 768–772 (2003)CrossRefGoogle Scholar
  26. 26.
    Gerdts, C.J., Sharoyan, D.E., Ismagilov, R.F.: A synthetic reaction network: Chemical amplification using nonequilibrium autocatalytic reactions coupled in time. Journal of the American Chemical Society 126, 6327–6331 (2004)CrossRefGoogle Scholar
  27. 27.
    Wiggins, S.: Integrated nanoliter systems. Nature Biotechnology 21, 1179–1183 (2003)CrossRefGoogle Scholar
  28. 28.
    Solomon, T.H., Mezić, I.: Uniform resonant chaotic mixing in fluid flows. Nature 425, 376–380 (2003)CrossRefGoogle Scholar
  29. 29.
    Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., Whitesides, G.M.: Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000)CrossRefGoogle Scholar
  30. 30.
    Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry 73, 1240–1246 (2001)CrossRefGoogle Scholar
  31. 31.
    Jeon, N.L., Bakaran, H., Dertinger, S.K.W., Whitesides, G.M., Van De Water, L., Toner, M.: Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnology 20, 826–830 (2002)CrossRefGoogle Scholar
  32. 32.
    Field, R.J., Körös, E., Noyes, R.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American Chemical Society 94, 8649–8664 (1972)CrossRefGoogle Scholar
  33. 33.
    Noyes, R., Field, R.J., Körös, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. Journal of the American Chemical Society 94, 1394–1395 (1972)CrossRefGoogle Scholar
  34. 34.
    Tyson, J.J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics, vol. 10. Springer, Heidelberg (1976)MATHGoogle Scholar
  35. 35.
    Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, New York (1998)Google Scholar
  36. 36.
    Hjelmfelt, A., Ross, J.: Chemical implementation and thermodynamics of collective neural networks. Proceedings of the National Academy of Sciences of the USA 89, 388–391 (1992)CrossRefGoogle Scholar
  37. 37.
    Hjelmfelt, A., Ross, J.: Pattern recognition, chaos, and multiplicity in neural networks of excitable systems. Proceedings of the National Academy of Sciences of the USA 91, 63–67 (1994)CrossRefGoogle Scholar
  38. 38.
    Hjelmfelt, A., Schneider, F.W., Ross, J.: Pattern recognition in coupled chemical kinetic systems. Science 260, 335–337 (1993)CrossRefGoogle Scholar
  39. 39.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. Proceedings of the National Academy of Sciences of the USA 88, 10983–10987 (1991)CrossRefMATHGoogle Scholar
  40. 40.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. Proceedings of the National Academy of Sciences of the USA 89, 383–387 (1992)CrossRefGoogle Scholar
  41. 41.
    Laplante, J.-P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition by chemical kinetics. The Journal of Physical Chemistry 99, 10063–10065 (1995)CrossRefGoogle Scholar
  42. 42.
    Rössler, O.E.: A principle for chemical multivibration. Journal of Theoretical Biology 36, 413–417 (1972)CrossRefGoogle Scholar
  43. 43.
    Rössler, O.E., Seelig, F.F.: A Rashevsky-Turing system as a two-cellular flip-flop. Zeitschrift für Naturforschung 27 b, 1444–1448 (1972)Google Scholar
  44. 44.
    Seelig, F.F., Rössler, O.E.: Model of a chemical reaction flip-flop with one unique switching input. Zeitschrift für Naturforschung 27 b, 1441–1444 (1972)Google Scholar
  45. 45.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joseph Farfel
    • 1
  • Darko Stefanovic
    • 1
  1. 1.Department of Computer ScienceUniversity of New MexicoUSA

Personalised recommendations