Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels

  • Bernard Yurke
  • David C. Lin
  • Noshir A. Langrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


Here we show that bulk materials can be given new properties through the incorporation of DNA-based nanodevices. In particular, by employing simple nanodevices as crosslinks in polyacrylamide gels we have made the mechanical properties of these gels responsive to the presence of particular DNA strands. Two examples will be focused on here. One consists of a polymer system that can be switched between a sol and a gel state though the application of DNA strands that either form crosslinks or remove crosslinks. The other consists of a hydrogel whose crosslinks incorporate a motor domain. The stiffness of this hydrogel can be altered through the application of fuel strands, which stiffen and lengthen the crosslinks, or through the application of removal strands which remove the fuel strands form the motor domain. Such DNA-responsive gels may find applications in biomedical technology ranging from drug delivery to tissue engineering.


Side Branch Motor Domain Spherical Inclusion Single Stranded Region Acrylamide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144 (1999)CrossRefGoogle Scholar
  2. 2.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNAfuelled molecular machine made of DNA. Nature 406, 605 (2000)CrossRefGoogle Scholar
  3. 3.
    Simmel, F.C., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001)CrossRefGoogle Scholar
  4. 4.
    Simmel, F.C., Yurke, B.: A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883 (2002)CrossRefGoogle Scholar
  5. 5.
    Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62 (2002)CrossRefGoogle Scholar
  6. 6.
    Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genet. Program. Evol. Mach. 4, 111 (2003)CrossRefGoogle Scholar
  7. 7.
    Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)CrossRefGoogle Scholar
  8. 8.
    Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, J.J., Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315 (2002)CrossRefGoogle Scholar
  10. 10.
    Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. U.S.A. 100, 1569 (2003)CrossRefGoogle Scholar
  11. 11.
    Dittmer, W.U., Reuter, A., Simmel, F.C.: A DNA-based machine that can cyclically bind and release thrombin. Angew. Chem. Int. Ed. 43, 3549 (2004)CrossRefGoogle Scholar
  12. 12.
    Liao, S.P., Seeman, N.C.: Translation of DNA signals into polymer assembly instructions. Science 306, 2072 (2004)CrossRefGoogle Scholar
  13. 13.
    Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203 (2004)CrossRefGoogle Scholar
  14. 14.
    Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834 (2004)CrossRefGoogle Scholar
  15. 15.
    Lin, D.C., Yurke, B., Langrana, N.A.: Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104 (2004)CrossRefGoogle Scholar
  16. 16.
    Lin, D.C., Yurke, B., Langrana, N.A.: Use of rigid spherical inclusions in Young’s moduli determination: Application to DNA-crosslinked gels. J. Biomech. Eng. 127, 571 (2005)CrossRefGoogle Scholar
  17. 17.
    Lin, D.C., Yurke, B., Langrana, N.A.: Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20, 1456 (2005)CrossRefGoogle Scholar
  18. 18.
    Nagahara, S., Matsuda, T.: Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Networks 4, 111 (1996)CrossRefGoogle Scholar
  19. 19.
    Lin, D.C., Langrana, N.A., Yurke, B.: Force-displacement relationships for spherical inclusions in finite elastic media. J. Appl. Phys. 97, 043510 (2005)CrossRefGoogle Scholar
  20. 20.
    Semler, E.J., Moghe, P.V.: Engineering hepatocyte functional fate through growth factor dynamics: The role of cell morphologic priming. Biotechnol. Bioeng. 75, 510 (2001)CrossRefGoogle Scholar
  21. 21.
    Semler, E.J., Ranucci, C.S., Moghe, P.V.: Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69, 359 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bernard Yurke
    • 1
  • David C. Lin
    • 2
  • Noshir A. Langrana
    • 2
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations