On Computational Properties of Template-Guided DNA Recombination

  • Mark Daley
  • Ian McQuillan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


The stichotrichous ciliates have attracted the attention of both biologists and computer scientists due to the unique genetic mechanism of gene descrambling. It has been suggested that it would perhaps be possible to co-opt this genetic process and use it to perform arbitrary computations in vivo. Motivated by this idea, we study here some basic properties and the computational power of a formalization inspired by the template-guided recombination model of gene descrambling proposed by Ehrenfeucht, Prescott and Rozenberg. We demonstrate that the computational power of a system based on template-guided recombination is quite limited. We then extend template-guided recombination systems with the addition of “deletion contexts” and show that such systems have strictly greater computational power than splicing systems [1, 2].


Computational Power Regular Language Iterate Version Computational Property Language Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Head, T.: Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology 49 (1987)Google Scholar
  2. 2.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New computing paradigms. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Prescott, D.: Genome gymnastics: Unique modes of DNA evolution and processing in ciliates. Nature Reviews Genetics 1, 191–198 (2000)CrossRefGoogle Scholar
  4. 4.
    Kari, L., Landweber, L.: Computational power of gene rearrangement. In: Winfree, E., Gifford, D. (eds.) DNA5. DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 207–216. American Mathematical Society (2000)Google Scholar
  5. 5.
    Landweber, L., Kari, L.: The evolution of cellular computing: Nature’s solution to a computational problem. In: Kari, L., Rubin, H., Wood, D. (eds.) DNA4, BioSystems, vol. 52, pp. 3–13. Elsevier, Amsterdam (1999)Google Scholar
  6. 6.
    Ehrenfeucht, A., Prescott, D., Rozenberg, G.: Computational aspects of gene (un)scrambling in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, pp. 45–86. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation in Living Cells, Gene Assembly in Ciliates. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Prescott, D., Rozenberg, G.: Molecular operations for DNA processing in hypotrichous ciliates. European Journal of Protistology 37, 241–260 (2001)CrossRefGoogle Scholar
  9. 9.
    Prescott, D., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of Theoretical Biology 222, 323–330 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)MATHGoogle Scholar
  11. 11.
    Berstel, J.: Transductions and Context-Free Languages. B.B. Teubner, Stuttgart (1979)Google Scholar
  12. 12.
    Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland Publishing Company, Amsterdam (1975)MATHGoogle Scholar
  13. 13.
    Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Computer Science 330, 237–250 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Daley, M., McQuillan, I.: Useful templates and template-guided DNA recombination. Theory of Computing Systems (to appear)Google Scholar
  15. 15.
    Doak, T.: Personal communicationGoogle Scholar
  16. 16.
    Landweber, L., Kuo, T., Curtis, E.: Evolution and assembly of an extremely scrambled gene. PNAS 97, 3298–3303 (2000)CrossRefGoogle Scholar
  17. 17.
    Păun, G.: Regular extended H systems are computationally universal. Journal of Automata, Languages and Combinatorics 1, 27–36 (1996)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mark Daley
    • 1
    • 2
  • Ian McQuillan
    • 2
  1. 1.Department of Computer Science and Department of BiologyUniversity of Western OntarioLondon, OntarioCanada
  2. 2.Department of Computer ScienceUniversity of SaskatchewanSaskatoon, SaskatchewanCanada

Personalised recommendations