A Microfluidic Device for DNA Tile Self-assembly

  • Koutaro Somei
  • Shohei Kaneda
  • Teruo Fujii
  • Satoshi Murata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


This paper presents a microfluidic device specially designed for DNA tile self-assembly. The DNA tile is one of the most promising building blocks for complex nanostructure, which can be used as a molecular computer or a scaffold for functional molecular machineries. In order to build desired nanostructure, it is necessary to realize errorless self-assembly under thermal fluctuation. We propose a method to directly control environmental parameters of DNA self-assembly such as concentration of each monomer tile and temperature in the reaction chamber by using a microfluidic device. The proposed device is driven by a capillary pump and has an open reaction chamber which enables real-time observation by AFM. Results of preliminary experiments to evaluate performance of the device will be reported.


Microfluidic Device Capillary Force Reaction Chamber Suction Force Service Port 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Winfree, E.: Algorithmic Self-Assembly of DNA, Ph.D Thesis, California Institute of Technology (1998)Google Scholar
  3. 3.
    Winfree, E., Yang, X., Seeman, N.C.: Universal Computation via Self-assembly of DNA: Some Theory and Experiments. DNA based Computers 2. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, pp. 191–213 (1999)Google Scholar
  4. 4.
    Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij, N., Delamarche, E.: Autonomous Microfluidic Cappilary System: Analytical Chemistry 74(24), 6139–6144 (2002)Google Scholar
  5. 5.
    Delamarche, E., Bernard, A., Schmid, H., Michel, B., Biebuyck, H.: Science 276, 779–781 (1997)Google Scholar
  6. 6.
    Smith, E.A., Wanat, M.J., Cheng, Y., Barreira, S.V.P., Frutos, A.G., Corn, R.M.: Spectroscopic Characterization, and Application of Sulfhydryl-Terminated Alkanethiol Monolayers for the Chemical Attachment of DNA onto Gold Surfaces: Langmuir, vol. 17, pp. 2502–2507 (2001)Google Scholar
  7. 7.
    Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, Y., Oroudjev, E., Hansma, H.G., Jaeger, L.: Building Programmable Jigsaw Puzzles with RNA. Science 306, 2068–2072 (2004)CrossRefGoogle Scholar
  8. 8.
    Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)CrossRefGoogle Scholar
  9. 9.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  10. 10.
    Yamamoto, T., Fujii, T., Nojima, T.: PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis: Lab on a Chip 2(4), 197–202Google Scholar
  11. 11.
    Several papers related to error suppression of DNA tiles are presented. In: Ferretti, C., et al. (eds.) Preliminary Proceedings of Tenth International Meeting on DNA Computing, Milan (2004)Google Scholar
  12. 12.
    Reif, J.H.: Local Parallel Biomolecular Computation. In: Proc. DNA-Based Computers, III, June 23-26. University of Pennsylvania (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Koutaro Somei
    • 1
  • Shohei Kaneda
    • 2
  • Teruo Fujii
    • 2
  • Satoshi Murata
    • 1
  1. 1.Tokyo Institute of TechnologyYokohamaJapan
  2. 2.The University of TokyoTokyoJapan

Personalised recommendations