Advertisement

A Self-assembly Model of Time-Dependent Glue Strength

  • Sudheer Sahu
  • Peng Yin
  • John H. Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)

Abstract

We propose a self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. We then present an implementation of our model using strand displacement reactions on DNA tiles. Under our model, we can demonstrate and study catalysis and self-replication in the tile assembly. We then study the tile complexity for assembling shapes in our model and show that a thin rectangle of size k ×N can be assembled using \(O(\frac{\log N}{\log \log N})\) types of tiles.

Keywords

Strand Displacement Normal Tile Seed Tile Thin Rectangle Strand Displacement Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Adleman, L.: Towards a mathematical theory of self-assembly. Technical Report 00-722, University of Southern California (2000)Google Scholar
  3. 3.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 740–748. ACM Press, New York (2001)Google Scholar
  4. 4.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espans, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the thirty-fourth annual ACM symposium on Theory of computing, pp. 23–32. ACM Press, New York (2002)Google Scholar
  5. 5.
    Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. In: Proceedings of the 43rd Symposium on Foundations of Computer Science, pp. 530–537 (2002)Google Scholar
  6. 6.
    Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T.: Complexities for generalized models of self-assembly. In: Proceedings of 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 880–889. ACM Press, New York (2004)Google Scholar
  7. 7.
    Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276(11), 233–235 (1997)CrossRefGoogle Scholar
  8. 8.
    Bruinsma, R.F., Gelbart, W.M., Reguera, D., Rudnick, J., Zandi, R.: Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90(24), 248101 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, H.L., Cheng, Q., Goel, A., Huang, M.D., de Espanes, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 890–899 (2004)Google Scholar
  11. 11.
    Cheng, Q., de Espanes, P.M.: Resolving two open problems in the self-assembly of squares. Technical Report 03-793, University of Southern California (2003)Google Scholar
  12. 12.
    Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature two. In: Proceedings of the first conference on Foundations of nanoscience: Self-assembled architectures and devices (2004)Google Scholar
  13. 13.
    Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Fujibayashi, K., Murata, S.: A method for error suppression for self-assembling DNA tiles. DNA Based Computing 10, 284–293 (2004)Google Scholar
  15. 15.
    Hughes, B.D.: Random Walks and Random Environments. Random Walks, vol. 1. Oxford University Press, New York (1995)MATHGoogle Scholar
  16. 16.
    Kao, M., Schweller, R.: Reduce complexity for tile self-assembly through temperature programming. In: Proceedings of 17th annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM Press, New York (to appear, 2006)Google Scholar
  17. 17.
    Klavins, E.: Directed self-assembly using graph grammars. In: Foundations of Nanoscience: Self Assembled Architectures and Devices, Snowbird, UT (2004)Google Scholar
  18. 18.
    Klavins, E., Ghrist, R., Lipsky, D.: Graph grammars for self-assembling robotic systems. In: Proceedings of the International Conference on Robotics and Automation (2004)Google Scholar
  19. 19.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  20. 20.
    Lagoudakis, M.G., LaBean, T.H.: 2-D DNA self-assembly for satisfiability. In: DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society, Providence (2000)Google Scholar
  21. 21.
    Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)CrossRefGoogle Scholar
  22. 22.
    Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)CrossRefGoogle Scholar
  23. 23.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 248–260. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 101–112. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Robinson, R.M.: Undecidability and non periodicity of tilings of the plane. Inventiones Math. 12, 177–209 (1971)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly. Proc. Natl. Acad. Sci. USA 97(3), 984–989 (2000)CrossRefGoogle Scholar
  27. 27.
    Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, University of Southern California (2001)Google Scholar
  28. 28.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 459–468. ACM Press, New York (2000)Google Scholar
  29. 29.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembling DNA graphs. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 1–9. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Sahu, S., Yin, P., Reif, J.H.: A self-assembly model of DNA tiles with time-dependent glue strength. Technical Report CS-2005-04, Duke University (2005)Google Scholar
  31. 31.
    Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One dimensional boundaries for DNA tile self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 108–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. In: DNA Based Computers 10. LNCS (2006)Google Scholar
  33. 33.
    Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 734–743. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 125–135. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: DNA Based Computers 10. LNCS (2006)Google Scholar
  36. 36.
    Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical Journal 40, 1–41 (1961)CrossRefGoogle Scholar
  37. 37.
    Winfree, E.: Simulation of computing by self-assembly. Technical Report 1998.22, Caltech (1998)Google Scholar
  38. 38.
    Winfree, E.: Self-healing tile sets (draft) (2005)Google Scholar
  39. 39.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  41. 41.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society, Providence (1999)Google Scholar
  42. 42.
    Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)CrossRefGoogle Scholar
  43. 43.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sudheer Sahu
    • 1
  • Peng Yin
    • 1
  • John H. Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations