Advertisement

Recognizing DNA Splicing

  • Matteo Cavaliere
  • Nataša Jonoska
  • Peter Leupold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)

Abstract

Motivated by recent techniques developed for observing evolutionary dynamics of a single DNA molecule, we introduce a formal model for accepting an observed behavior of a splicing system. The main idea is to input a marked DNA strand into a test tube together with certain restriction enzymes and, possibly, with other DNA strands. Under the action of the enzymes, the marked DNA strand starts to evolve by splicing with other DNA strands. The evolution of the marked DNA strand is “observed” by an outside observer and the input DNA strand is “accepted” if its (observed) evolution follows a certain expected pattern. We prove that using finite splicing system (finite set of rules and finite set of axioms), universal computation is attainable with simple observing and accepting devices made of finite state automata.

Keywords

Turing Machine Regular Language Mathematical Linguistics Input String State Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 226, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Cavaliere, M.: Computing by Observing Bio-Systems: The Case of Sticker Systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alavisatos, A.P.: Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  4. 4.
    Cavaliere, M., Jonoska, N.: (Computing by) Observing Splicing Systems (manuscript, 2004)Google Scholar
  5. 5.
    Cavaliere, M., Leupold, P.: Evolution and Observation – A New Way to Look at Membrane Systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 70–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cavaliere, M., Leupold, P.: Evolution and Observation — A Non-Standard Way to Generate Formal Languages. Theoretical Computer Science 321, 233–248 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cavaliere, M., Leupold, P.: Evolution and Observation — A Non-Standard Way to Accept Formal Languages. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 152–162. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Chan, W.C.W., Nie, S.: Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 281, 2016–2018 (1998)CrossRefGoogle Scholar
  9. 9.
    Goode, E., Pixton, D.: Semi-Simple Splicing Systems. In: Martin-Víde, C., Mitrana, V. (eds.) Where Mathematics, Computer Science, Linguistics and Biology Meet, pp. 343–352. Kluwer Academic Publisher, Dordrecht (2001)CrossRefGoogle Scholar
  10. 10.
    Head, T.: Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology 49, 737–759 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jovin, T.M., Arndt-Jovin, D.J.: Cell Structure and Function by Microspectrofluorimetry. In: Kohen, E., Ploem, J.S., Hirschberg, J.G. (eds.), pp. 99–117. Academic, Orlando, FloridaGoogle Scholar
  12. 12.
    Levsky, J.M., Shenoy, S.M., Pezo, R.C., Singer, R.H.: Single-Cell Gene Expression Profiling. Science 297, 836–840 (2002)CrossRefGoogle Scholar
  13. 13.
    Lippincott-Schwartz, J., et al.: Green Fluorescent Proteins. In: Sullivan, K., Kay, S. (eds.), pp. 261–291. Academic, San Diego (1999)Google Scholar
  14. 14.
    Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Studying Protein Dynamics in Living Cells. Nature Rev. Mol. Cell. Biol. 2, 444–456 (2001)CrossRefGoogle Scholar
  15. 15.
    Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple Splicing Systems. Discrete Applied Mathematics 84, 145–163 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum Dots for Live Cells, in Vivo Imaging and Diagnostic. Science 307 (2005), www.sciencemag.org
  17. 17.
    Păun, G.: Splicing systems with targets are computationally universal. Information Processing Letters 59, 129–133 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing Paradigms. Springer, Berlin (1998)MATHGoogle Scholar
  19. 19.
    Rigler, R., Elson, E.S.: Fluorescent Correlation Spectroscopy. Springer, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  21. 21.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matteo Cavaliere
    • 1
  • Nataša Jonoska
    • 2
  • Peter Leupold
    • 3
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA
  3. 3.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations