Analysis and Simulation of Dynamics in Probabilistic P Systems

  • Dario Pescini
  • Daniela Besozzi
  • Claudio Zandron
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


We introduce dynamical probabilistic P systems, a variant where probabilities associated to the rules change during the evolution of the system, as a new approach to the analysis and simulation of the behavior of complex systems. We define the notions for the analysis of the dynamics of these systems and we show an application for the investigation of the properties of the Brusselator (a simple scheme for the Belousov-Zhabothinskii reaction).


Phase Space Evolution Rule Quasi Periodic Oscillation Mechanosensitive Channel Membrane Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardelean, I.I., Besozzi, D., Garzon, M.H., Mauri, G., Roy, S.: P system models for mechanosensitive channels. In: [4]Google Scholar
  2. 2.
    Ardelean, I.I., Cavaliere, M.: Modelling biological processes by using a probabilistic P system software. Natural Computing 2, 173–197 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: [4]Google Scholar
  4. 4.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (in press)Google Scholar
  5. 5.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journ. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  6. 6.
    Obtułowicz, A., Păun, G.: (In search of) probabilistic P systems. BioSystems 70, 107–121 (2003)CrossRefGoogle Scholar
  7. 7.
    Madhu, M.: Probabilistic rewriting P systems. Int. J. Found. Comput. Sci. 14(1), 157–166 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Păun, G.: Membrane Computing. An introduction. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling EGFR signalling cascade using continuous membrane systems. In: Plotkin, G. (ed.) Pre-Proceedings of CMSB, Edinburgh, April 3-5, pp. 118–129 (2005)Google Scholar
  11. 11.
    Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. Journ. Chem. Phys. 48, 1695–1700 (1968)CrossRefGoogle Scholar
  12. 12.
    Suzuki, Y., Tanaka, H.: Abstract rewriting systems on multisets and their application for modelling complex behaviours. In: Cavaliere, M., Martín-Vide, C., Păun, G. (eds.) Rovira i Virgili Univ. Tech. Rep. 26, pp. 313–331. Brainstorming Week on Membrane Computing, Tarragona (2003)Google Scholar
  13. 13.
    Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. Journ. Chem. Phys. 58, 3919–3930 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dario Pescini
    • 1
  • Daniela Besozzi
    • 2
  • Claudio Zandron
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations