Hairpin Structures in DNA Words

  • Lila Kari
  • Stavros Konstantinidis
  • Elena Losseva
  • Petr Sosík
  • Gabriel Thierrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


We formalize the notion of a DNA hairpin secondary structure, examining its mathematical properties. Two related secondary structures are also investigated, taking into the account imperfect bonds (bulges, mismatches) and multiple hairpins. We characterize maximal sets of hairpin-forming DNA sequences, as well as hairpin-free ones. We study their algebraic properties and their computational complexity. Related polynomial-time algorithms deciding hairpin-freedom of regular sets are presented. Finally, effective methods for design of long hairpin-free DNA words are given.


Hairpin Structure Regular Language Free Word Pushdown Automaton Free Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amos, M.: Theoretical and Experimental DNA Computations. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena, S.: Algorithms for testing that sets of DNA words concatenate without secondary structure. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 182–195. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)CrossRefGoogle Scholar
  4. 4.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Information Processing Letters 43, 185–190 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, J., Deaton, R., Garzon, M., Kim, J.W., Wood, D., Bi, H., Carpenter, D., Wang, Y.-Z.: Characterization of non-crosshybridizing DNA oligonucleotides manufactured in vitro. In: [15], pp. 132–141Google Scholar
  6. 6.
    Hopcroft, J., Ullman, J., Motwani, R.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)MATHGoogle Scholar
  7. 7.
    Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congressus Numerantium 156, 99–110 (2002)MathSciNetMATHGoogle Scholar
  8. 8.
    Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 61–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On hairpin-free words and languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kari, L., Konstantinidis, S., Sosík, P.: Bond-free languages: Formalizations, maximality and construction methods. In: [15], pp. 16–25Google Scholar
  12. 12.
    Kobayashi, S.: Testing Structure Freeness of Regular Sets of Biomolecular Sequences. In: [15], pp. 395–404Google Scholar
  13. 13.
    Marathe, A., Condon, A., Corn, R.: On combinatorial DNA word design. In: Winfree, E., Gifford, D. (eds.) DNA based Computers V. DIMACS Series, pp. 75–89. AMS Press (2000)Google Scholar
  14. 14.
    Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 37–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Mauri, G., Ferretti, C. (eds.): Preliminary proceedings of DNA 10, Tenth International Meeting on DNA Computing. University of Milano-Bicocca (2004)Google Scholar
  16. 16.
    Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  17. 17.
    Roman, S.: Coding and Information Theory. Springer, New York (1992)MATHGoogle Scholar
  18. 18.
    Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: PNA-mediated Whiplash PCR. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 104–116. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)MATHGoogle Scholar
  20. 20.
    Takahashi, N., Kameda, A., Yamamoto, M., Ohuchi, A.: Aqueous computing with DNA hairpin-based RAM. In: [15], pp. 50–59Google Scholar
  21. 21.
    Thierrin, G.: Convex languages. In: Proc. IRIA Symp., pp. 481–492. North-Holland, Amsterdam (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lila Kari
    • 1
  • Stavros Konstantinidis
    • 2
  • Elena Losseva
    • 1
  • Petr Sosík
    • 3
    • 4
  • Gabriel Thierrin
    • 5
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada
  2. 2.Dept. of Mathematics and Computing ScienceSaint Mary’s UniversityHalifaxCanada
  3. 3.Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del Monte, MadridSpain
  4. 4.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic
  5. 5.Department of MathematicsThe University of Western OntarioLondonCanada

Personalised recommendations