Expectation and Variance of Self-assembled Graph Structures

  • Nataša Jonoska
  • Gregory L. McColm
  • Ana Staninska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3892)


Understanding how nanostructures are self-assembled into more complex forms is a crucial component of nanotechnology that shall lead towards understanding other processes and structures in nature. In this paper we use a model of self-assembly using flexible junction molecules and describe how it can in some static conditions be used to predict the outcome of a graph self-assembly. Using probabilistic methods, we show the expectation and the variance of the number of self-assembled cycles, K 3, and discuss generalization of these results for C n . We tie this analysis to previously observed experimental results.


Complete Complex Junction Molecule Junction Type Indicator Random Variable Springer LNCS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espanes, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of STOC 2002, Montreal Quebec, Canada (2002)Google Scholar
  2. 2.
    Adleamn, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, Washington, pp. 530–537 (2002)Google Scholar
  3. 3.
    Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)CrossRefGoogle Scholar
  4. 4.
    Dugaiczyk, A., Boyer, H.W., Goodman, H.M.: Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. Journal of Molecular Biology 96(1), 171–178 (1975)CrossRefGoogle Scholar
  5. 5.
    Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley, New York (2002)MATHGoogle Scholar
  6. 6.
    Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmanle Input by DNA Self-Assembli. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)CrossRefGoogle Scholar
  8. 8.
    Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Jonoska, N., McColm, G.L.: Self-assembly by DNA Junction Molecules: The Theoretical Model. In: Reif, J. (eds.) Foundations of Nanoscience (2004)Google Scholar
  10. 10.
    Kao, M.-Y., Ramachandran, V.: DNA self-assembly for constructing 3D boxes. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Mao, C., Sun, W., Seeman, N.C.: Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Journal of American Chemical Society 121(23), 5437–5443 (1999)CrossRefGoogle Scholar
  12. 12.
    Qi, J., Li, X., Yang, X., Seeman, N.C.: Ligation of Triangles Built from bulged 3-arm DNA Branched Junctions. Journal of American Chemical Society 120, 6121–6130 (1996)CrossRefGoogle Scholar
  13. 13.
    Ross, S.M.: A First Course in Probability. Prentice Hall, Englewood Cliffs (2001)MATHGoogle Scholar
  14. 14.
    Rothemund, P.W.K., Papadakis, P., Winfree, E.: Algorithmic Self-Assembly of DNA Sierpinski Triangles. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)Google Scholar
  16. 16.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-Assembly of graphs represented by DNA helix axis topology. Journal of American Chemical Society 126(21), 6648–6657 (2004)CrossRefGoogle Scholar
  17. 17.
    Seeman, N.C.: DNA junctions and lattices. Journal of theoretical biology 99, 237–247 (1982)CrossRefGoogle Scholar
  18. 18.
    Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single stranded DNA folds into a nanoscale octahedron. Nature 427, 618–621 (2004)CrossRefGoogle Scholar
  19. 19.
    Spencer, J.H.: Ten lectures on the probabilistic method. SIAM, Philadelphia (1987)MATHGoogle Scholar
  20. 20.
    Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5 arm and 6 arm DNA junctions. Biochemistry 30, 5667–5674 (1991)CrossRefGoogle Scholar
  21. 21.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimentsional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. Journal of American Chemical Society 116(5), 1661–1669 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nataša Jonoska
    • 1
  • Gregory L. McColm
    • 1
  • Ana Staninska
    • 1
  1. 1.Department of MathematicsUniversity of South FloridaUSA

Personalised recommendations