Advertisement

Location-Based Context Retrieval and Filtering

  • Carsten Pils
  • Ioanna Roussaki
  • Maria Strimpakou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3987)

Abstract

Context-based applications are supposed to decrease human-machine interactions. To this end, they must interpret the meaning of context data. Ontologies are a commonly accepted approach of specifying data semantics and are thus considered a precondition for the implementation of context-based systems. Yet, experiences gained from the European project Daidalos evoke concerns that this approach has its flaws when the application domain can hardly be delimited. These concerns are raised by the human limitation in dealing with complex specifications.

This paper proposes a relaxation of the situation: Humans strength is the understating of natural languages, computers, however, possess superior pattern matching power. Therefore, it is suggested to enrich or even replace semantic specifications of context data items by free-text descriptions. For instance, rather than using an Ontology specification to describe an Italian restaurant the restaurant can simply be described by its menu card.

To facilitate this methodology, context documents are introduced and a novel information retrieval approach is elucidated, evaluated, and analysed with the help of Bose-Einstein statistics. It is demonstrated that the new approach clearly outperforms conventional information retrieval engines and is an excellent addition to context Ontologies.

Keywords

Information Retrieval Geographic Information System Query Term Context Data Information Retrieval System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gu, T., Pung, H., Zhang, D.Q.: Toward an OSGI-based Infrastructure for Context-Aware Applications. IEEE Pervasive Computing 3, 66–74 (2004)Google Scholar
  2. 2.
    Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic Space: An Infrastructure for Smart Spaces. IEEE Pervasive Computing 3, 32–39 (2004)CrossRefGoogle Scholar
  3. 3.
    Christopoulou, E., Kameas, A.: GAS Ontology: An ontology for collaboration among ubiquitous computing. International Journal of Human-Computer Studies: Special issue on Protege 62, 664–685 (2005)CrossRefGoogle Scholar
  4. 4.
    Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an Extensible Context Ontology for Ambient Intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Khedr, M., Karmouch, A.: ACAI: Agent-based context-aware infrastructure for spontaneous applications. Journal of Network and Computer Applications 28, 19–44 (2005)CrossRefGoogle Scholar
  6. 6.
    Noy, N.: Order from chaos. ACM Queue 3 (2005), http://www.acmqueue.org
  7. 7.
    Guiasu, S.: Information theory with applications. McGraw-Hill, New York (1977)MATHGoogle Scholar
  8. 8.
    Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing Journal 5, 4–7 (2001)CrossRefGoogle Scholar
  9. 9.
    Daidalos Consortium: Designing Advanced network Interfaces for the Delivery and Administration of Location independent, Optimised personal Services (DAIDALOS) (2005), http://www.ist-daidalos.org
  10. 10.
    Strimpakou, M., Roussaki, I., Pils, C., Angermann, M., Robertson, P., Anagnostou, M.: Context modelling and management in ambient-aware pervasive environments. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 2–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Bauer, M., Becker, C., Rothermel, K.: Location models from the perspective of context-aware applications and mobile ad hoc networks. Personal and Ubiquitous Computing 6, 322–328 (2002)CrossRefGoogle Scholar
  12. 12.
    Shekhar, S., Chawla, S., Ravada, S., Fetterer, A., Liu, X., Lu, C.: Spatial databases — Accomplishments and research needs. IEEE Transactions on Knowledge and Data Engineering 11, 45–55 (1999)CrossRefGoogle Scholar
  13. 13.
    Larson, R.R., Frontiera, P.: Spatial Ranking Methods for Geographic Information Retrieval (GIR) in Digital Libraries. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 45–56. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: The concept revisited. ACM Transactions on Information Systems 20, 116–131 (2002)CrossRefGoogle Scholar
  15. 15.
    Kammanahalli, H., Gopalan, S., Sridhar, V., Ramamritham, K.: Context aware retrieval in web-based collaborations. In: Third IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 2005): Workshop on Context Modeling and Reasoning (CoMoRea 2004), pp. 8–12. IEEE computer society press, Los Alamitos (2004)Google Scholar
  16. 16.
    Jones, G.J.F., Brown, P.J.: Context-aware retrieval for ubiquitous computing environments. In: Crestani, F., Dunlop, M.D., Mizzaro, S. (eds.) Mobile HCI International Workshop 2003. LNCS, vol. 2954, pp. 227–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Lesk, M.: The seven ages of information retrieval. In: Proceedings of the conference for the 50th anniversery of As we May Think, International Federation of Library Associations and Institutions (1995), http://www.ifla.org/VI/5/op/udtop5/udt-op5.pdf
  18. 18.
    Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments - part 2. Information Processing and Management 36, 809–840 (2000)CrossRefGoogle Scholar
  19. 19.
    Amati, G., Van Rijsbergen, J.C.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems (TOIS) 20, 357–389 (2002)CrossRefGoogle Scholar
  20. 20.
    Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An information-theoretic approach to automaitc query expansion. ACM Transactions on Information Systems 19, 1–27 (2001)CrossRefGoogle Scholar
  21. 21.
    Brown, J.P., Jones, G.J.: Exploiting contextual change in context-aware retrieval. In: Proceedings of the 17th ACM Symposium on Applied Computing (SAC 2002), Madrid, pp. 650–656. ACM press, New York (2002)Google Scholar
  22. 22.
    Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering 15, 784–796 (2003)CrossRefGoogle Scholar
  23. 23.
    Chen, A.: Context-aware collaborative filtering system: Predicting the user’s preference in the ubiquitous computing environment. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 244–253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Yu, C., Liu, K.L., Meng, W., Wu, Z., Rishe, N.: A methodology to retrieve text documents from multiple databases. IEEE Transactions on Knowledge and Data Engineering 14, 1347–1361 (2002)CrossRefGoogle Scholar
  26. 26.
    Voorhees, E.: The philosophy of information retrieval evaluation. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 355–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    National Institute of Standards and Technology: Text REtrieval Conference (TREC) (2005), http://trec.nist.gov
  28. 28.
    Pils, C.: Homepage (2005), http://www.pils.it
  29. 29.
    University of Glasgow, Informtion Retrieval Group: TERabyte RetrIEveR (Terrier) (2005), http://ir.dcs.gla.ac.uk/terrier
  30. 30.
    Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Johnson, D.: Terrier Information Retrieval Platform. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 517–519. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Rijsbergen, C.: 7. Evaluation. In: Information Retrieval, 2nd edn., pp. 112–139. Butterworths (1979)Google Scholar
  32. 32.
    Rhodes, B.J., Maes, P.: Just-in-time information retrieval agents. IBM Systems Journal 39, 685–704 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carsten Pils
    • 1
  • Ioanna Roussaki
    • 2
  • Maria Strimpakou
    • 2
  1. 1.Waterford Institute of TechnologyTelecommunications Software & Systems Group (TSSG)Ireland
  2. 2.School of Electrical and Computer EngineeringNational Technical University of AthensGreece

Personalised recommendations