Large Scale Multikernel RVM for Object Detection

  • Dimitris Tzikas
  • Aristidis Likas
  • Nikolas Galatsanos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3955)


The Relevance Vector Machine(RVM) is a widely accepted Bayesian model commonly used for regression and classification tasks. In this paper we propose a multikernel version of the RVM and present an alternative inference algorithm based on Fourier domain computation to solve this model for large scale problems, e.g. images. We then apply the proposed method to the object detection problem with promising results.


Basis Function Receiver Operating Characteristic Object Detection Conjugate Gradient Method Training Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tipping, M.E.: Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research 1, 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20 (1995)Google Scholar
  3. 3.
    Faul, A.C., Tipping, M.E.: A variational approach to robust regression. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 95–102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Tipping, M.E., Faul, A.C.: Fast marginal likelihood maximisation for sparse Bayesian models. In: Proceedings of Artificial Intelligence and Statistics (2003)Google Scholar
  5. 5.
    Girolami, M., Rogers, S.: Hierarchical Bayesian Models for Kernel Learning. In: ICML 2005 (2005)Google Scholar
  6. 6.
    Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,
  7. 7.
    Abu-Naser, A., Galatsanos, N.P., Wernick, M.N., Shonfeld, D.: Object Recognition Based on Impulse Restoration Using the Expectation-Maximization Algorithm. Journal of the Optical Society of America 15(9), 2327–2340 (1998)CrossRefGoogle Scholar
  8. 8.
    Chen, Q., Defrise, M., Decorninck, F.: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. Pattern Recognition and Machine Intelligence 12(12), 1156–1198 (1994)CrossRefGoogle Scholar
  9. 9.
    Horner, J.L., Gianino, P.D.: Phase-only matched filtering. Applied Optics 23(6), 812–816 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimitris Tzikas
    • 1
  • Aristidis Likas
    • 1
  • Nikolas Galatsanos
    • 1
  1. 1.Department of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations