Advertisement

Pattern Matching-Based System for Machine Translation (MT)

  • George Tambouratzis
  • Sokratis Sofianopoulos
  • Vassiliki Spilioti
  • Marina Vassiliou
  • Olga Yannoutsou
  • Stella Markantonatou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3955)

Abstract

The innovative feature of the system presented in this paper is the use of pattern-matching techniques to retrieve translations resulting in a flexible, language-independent approach, which employs a limited amount of explicit a priori linguistic knowledge. Furthermore, while all state-of-the-art corpus-based approaches to Machine Translation (MT) rely on bitexts, this system relies on extensive target language monolingual corpora. The translation process distinguishes three phases: 1) pre-processing with ‘light’ rule and statisticsbased NLP techniques 2) search & retrieval, 3) synthesising. At Phase 1, the source language sentence is mapped onto a lemma-to-lemma translated string. This string then forms the input to the search algorithm, which retrieves similar sentences from the corpus (Phase 2). This retrieval process is performed iteratively at increasing levels of detail, until the best match is detected. The best retrieved sentence is sent to the synthesising algorithm (Phase 3), which handles phenomena such as agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Onaizan, Y., Germann, U., Hermjakob, U., Knight, K., Koehn, P., Marcu, D., Yamada, K.: Translating with Scarce Resources. In: American Association for Artificial Intelligence conference (AAAI 2000), Austin, Texas, pp. 672–678 (2000), available at http://www.isi.edu/natural-language/projects/rewrite
  2. 2.
    Boutsis, S., Prokopidis, P., Giouli, V., Piperidis, S.: A Robust Parser for Unrestricted Greek Text. In: Proceedings of the Second International Conference on Language Resources and Evaluation, Athens, Greece, vol. 1, pp. 467–482 (2000)Google Scholar
  3. 3.
    Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., Jelinek, F., Lafferty, J., Mercer, R., Roosin, P.S.: A Statistical Approach to Machine Translation. Computational Linguistics 16(2), 79–85 (1990)Google Scholar
  4. 4.
    Cranias, L., Papageorgiou, H., Piperidis, S.: Example Retrieval from a Translation Memory. Natural Language Engineering 3, 255–277 (1997)CrossRefGoogle Scholar
  5. 5.
    Dologlou, I., Markantonatou, S., Tambouratzis, G., Yannoutsou, O., Fourla, A., Ioannou, N.: Using Monolingual Corpora for Statistical Machine Translation. In: Proceedings of EAMT/CLAW 2003, Dublin, Ireland, pp. 61–68 (2003)Google Scholar
  6. 6.
    Ioannou, N.: METIS: Statistical Machine Translation Using Monolingual Corpora. In: Proceedings of the Workshop on Text Processing for Modern Greek: From Symbolic to Statistical Approaches (held in conjunction with the 6th International Conference of Greek Linguistics), Rethymno, Greece, pp. 11–21 (2003)Google Scholar
  7. 7.
    Labropoulou, P., Mantzari, E., Gavrilidou, M.: Lexicon-Morphosyntactic Specifications: Language Specific Instantiation (Greek), PP-PAROLE, MLAP report, pp. 63–386 (1996)Google Scholar
  8. 8.
    McTait, K.: Translation Patterns, Linguistic Knowledge and Complexity in EBMT. In: Carl, M., Way, A. (eds.) Recent Advances in Example-Based Machine Translation, pp. 307–338. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  9. 9.
    Nagao, M.: A Framework of a Mechanical Translation between Japanese and English by Analogy Principle. In: Elithorn, A., Banerji, R. (eds.) Artificial and Human Intelligence, North-Holland, Amsterdam (1984)Google Scholar
  10. 10.
    Nist: Automatic Evaluation of Machine Translation Quality Using n-gram Co-occurrences Statistics (2002); available at http://www.nist.gov/speech/tests/mt/
  11. 11.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: A Method for Automatic Evaluation of Machine Translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, USA, pp. 311–318 (2002)Google Scholar
  12. 12.
    Popovic, M., Ney, H.: Exploiting Phrasal Lexica and Additional Morpho-Syntactic Language Resources for Statistical Machine Translation with Scarce Training Data. In: EAMT 10th Annual Conference, Budapest, Hungary (2005)Google Scholar
  13. 13.
    Vandeghinste, V.: Manual for ShaRPa 2.0. Internal Report, Centre for Computational Linguistics, K.U.Leuven (2005)Google Scholar
  14. 14.
    Way, A.: Translating with Examples: The LFG-DOT Models of Translation. In: Carl, M., Way, A. (eds.) Recent Advances in Example-Based Machine Translation, pp. 443–472. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • George Tambouratzis
    • 1
  • Sokratis Sofianopoulos
    • 1
  • Vassiliki Spilioti
    • 1
  • Marina Vassiliou
    • 1
  • Olga Yannoutsou
    • 1
  • Stella Markantonatou
    • 1
  1. 1.Institute for Language and Speech ProcessingAthensGreece

Personalised recommendations