A Note on the Numerical Inversion of the Laplace Transform

  • Przemysław Stpiczyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


The aim of this paper is to show that the recently developed high performance divide and conquer algorithm for finding trigonometric sums can be applied to improve the performance of the Talbot’s method for the numerical inversion of the Laplace Transform on modern computer architectures including shared memory parallel computers. We also show how to vectorize the first stage of the Talbot’s method, namely computing all coefficients of the trigonometric sums used by the method. Numerical tests show that the improved method gives the same accuracy as the standard algorithm and it allows to utilize parallel processors.


Laplace Transform Numerical Inversion Message Passing Algorithm Solve Linear System Distribute Memory Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, J., Valko, P.: Multi-precision Laplace transform inversion. Int. J. Numer. Mech. Eng. 60, 797–993 (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  3. 3.
    de Rosa, M.A., Giunta, G., Rizzardi, M.: Parallel Talbot’s algorithm for distributed memory machines. Parallel Computing 21, 783–801 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Dongarra, J., Duff, I., Sorensen, D., Van der Vorst, H.: Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991)Google Scholar
  5. 5.
    Murli, A., Rizzardi, M.: Algorithm 682: Talbot’s method for the Laplace inversion problem. ACM Trans. Math. Soft. 16, 158–168 (1990)CrossRefMATHGoogle Scholar
  6. 6.
    Stoer, J., Bulirsh, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)CrossRefGoogle Scholar
  7. 7.
    Stpiczyński, P.: Fast parallel algorithms for computing trigonometric sums. In: Tudruj, M., Jordan, A. (eds.) Proceedings of PARELEC 2002, International Conference on Parallel Computing in Electrical Engineering, pp. 299–304. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  8. 8.
    Stpiczyński, P.: A new message passing algorithm for solving linear recurrence systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 466–473. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Maths. Applics. 23, 97–120 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Przemysław Stpiczyński
    • 1
  1. 1.Department of Computer ScienceMaria Curie–Skłodowska UniversityLublinPoland

Personalised recommendations