A Parallel Preconditioning for the Nonlinear Stokes Problem

  • Paweł J. Matuszyk
  • Krzysztof Boryczko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


We discuss a parallel preconditioner for the algebraic systems of equations arising from Newton-Raphson linearization and finite element (FE) discretization of stabilized formulation for the highly nonlinear Stokes equations. We compare SSOR/Jacobi and FSAI(1)/Jacobi preconditioners for the parallel MINRES accelerator implemented using C++/OpenMP. Results are presented for SGI Altix 3700 and IBM Power4 machines. As an example a simulation of the compression test of the rigid-viscoplastic material is shown.


Sparsity Pattern Finite Element Solver Sparse Approximate Inverse Finite Element Shape Function Factorize Sparse Approximate Inverse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, C.C., Kobayashi, S.: Rigid-Plastic-Finite-Element Analysis of Ring Compression. Appl. of Numerical Methods to Forming Processes 28, 163–174 (1978)Google Scholar
  2. 2.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Iterative Methods for Problems in CFD. Technical report CS-TR-3675, Oxford Unversity Computing Laboratory (1996)Google Scholar
  3. 3.
    Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order intrpolations. Comp. Meth. Appl. Mech. Eng. 59, 85–99 (1986)CrossRefMATHGoogle Scholar
  4. 4.
    Maniatty, A.M., Liu, L., Klaas, O., Shephard, M.S.: Stabilized finite element method for viscoplastic flow: formulation and a simple progressive solution strategy. Comp. Meth. Appl. Mech. Eng. 190, 4609–4625 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Kolotilina, L.Y., Yeremin, L.Y.: Factorized Sparse Approximate Inverse Preconditionnings I. Theory. SIAM J. Matrix Anal. Appl. 14, 45–58 (1993)CrossRefGoogle Scholar
  6. 6.
    Matuszyk, P.J.: Object-oriented realization of the FE solver for compression test. Informatykaw Technologii Materiałów 4, 127–143 (2004)Google Scholar
  7. 7.
    Matuszyk, P.J.: Object-oriented realization of parallel algorithms for simulation of plastometric tests on shared-memory cluster. PhD Thesis, AGH, Kraków (2005)Google Scholar
  8. 8.
    Wagoner, R.H., Chenot, J.-L.: Metal Forming Analysis. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paweł J. Matuszyk
    • 1
  • Krzysztof Boryczko
    • 1
  1. 1.AGH – University of Science and TechnologyKrakówPoland

Personalised recommendations