Grid-Based Evolutionary Optimization of Structures

  • Wacław Kuś
  • Tadeusz Burczyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


The paper is devoted to computational grids applications in evolutionary optimization of mechanical structures. The LCG2 and UNICORE grid middleware are used. The optimization is performed by means of the distributed evolutionary algorithm. The fitness function is computed using the finite element method. The numerical example is presented in the paper.


Evolutionary Algorithm Load Case Equivalent Stress Evolutionary Optimization Virtual Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burczyński, T., Kuś, W.: Distributed evolutionary algorithms in shape optimization of nonlinear structures. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Burczyński, T., Kuś, W., Długosz, A., Poteralski, A., Szczepanik, M.: Sequential and Distributed Evolutionary Computations in Structural Optimization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Burczyński, T., Kuś, W., Długosz, A., Orantek, P.: Optimization and defect identification using distributed evolutionary algorithms. Engineering Applications of Artificial Intelligence 17(4), 337–344 (2004)CrossRefGoogle Scholar
  4. 4.
    Burczyński, T., Kuś, W.: Optimization of structures using distributed and parallel evolutionary algorithms Parallel Processing and Applied Mathematics. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 572–579. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Condor, High Throughput Computing,
  6. 6.
    Crossgrid project home page,
  7. 7.
    EGEE Enablig Grids for E-Science in Europe home page,
  8. 8.
    Kleiber, M. (ed.): Handbook of Computational Solid Mechanics. Springer, Heidelberg (1998)MATHGoogle Scholar
  9. 9.
    Kuś, W., Burczyński, T.: Evolutionary optimization of elasto-plastic solids. In: Burczyski, T., Cholewa, W. (eds.) Methods of Artificial Intelligence in Mechanics and Mechanical Engineering, Gliwice (2000)Google Scholar
  10. 10.
    Kuś, W., Burczyński, T.: Computer implementation of the coevolutionary algorithm with Condor scheduler. In: KAEIOG 2004, Kazimierz (2004)Google Scholar
  11. 11.
    Kuś, W., Burczyński, T.: Distributed evolutionary algorithm plugin for UNICORE system. In: Proc. 4th Cracow Grid Workshop, Cracow (2004)Google Scholar
  12. 12.
  13. 13.
    Michalewicz, Z.: Genetic algorithms + data structures =evolutionary algorithms. Springer, Berlin (1996)MATHGoogle Scholar
  14. 14.
    MPICH project home page,
  15. 15.
    Tanese, R.: Distributed Genetic Algorithms. In: Schaffer, J.D. (ed.) Proc. 3rd ICGA, San Mateo, USA, pp. 434–439 (1989)Google Scholar
  16. 16.
    UNICORE Plus Final Report - Uniform Interface to Computing Resources, Joint Project Report for the BMBF Project UNICORE Plus, Grant Number: 01 IR 001 A-D (2003)Google Scholar
  17. 17.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. In: The Basis, vol. 1-2, Butterworth, Oxford (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wacław Kuś
    • 1
  • Tadeusz Burczyński
    • 1
    • 2
  1. 1.Department for Strength of Materials and Computational MechanicsSilesian University of TechnologyGlwicePoland
  2. 2.Institute for Computer ModellingCracow University of TechnologyCracowPoland

Personalised recommendations