Optimised Scheduling of Grid Resources Using Hybrid Evolutionary Algorithms

  • Wilfried Jakob
  • Alexander Quinte
  • Karl-Uwe Stucky
  • Wolfgang Süß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


The present contribution shall illustrate the necessity of planning and optimising resource allocation in a grid. Requirements to be met by a resource management system will be defined. These requirements are comparable with the requirements on planning systems in other fields, e.g. production planning systems. Here, various methods have already been developed for optimised planning. Suitable methods are Evolutionary Algorithms. Based on an example from the field of production planning, the performance of these methods is demonstrated and use in the GORBA resource broker shall be described.


Optimise Schedule Grid Resource Grid Environment Optimise Resource Allocation Resource Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC Resource Management Systems: Queuing vs. Planning. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Foster, I., Roy, A., Sander, V.: A Quality of Service Architecture that Combines Reservation and Application Adaption. In: Proc. of the 8th Intern. Workshop on Quality of Service (2000)Google Scholar
  3. 3.
    Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-Scheduling Strategies for Grid Computing. In: Buyya, R., Baker, M. (eds.) GRID 2000. LNCS, vol. 1971, pp. 191–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Moreno, R.A.: Job Scheduling and Resource Management Techniques in Dynamic Grid Environments (2002)Google Scholar
  5. 5.
    Fellows, D.K.: Abstraction of Resource Broker Interface. Deliverable D 2.4a/UoM, University of Manchester (2002)Google Scholar
  6. 6.
    Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing. Dissertation, Monash University, Melbourne, Australia (2002)Google Scholar
  7. 7.
    Roy, A., Livny, M.: Condor and Preemptive Resume Scheduling. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management: State of the Art and Future Trends, pp. 135–144. Kluwer Academic Publisher, Dordrecht (2003)Google Scholar
  8. 8.
    Jakob, W.: HyGLEAM - An Approach to Generally Applicable Hybridization of Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 527–536. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Jakob, W.: Eine neue Methodik zur Erhöhung der Leistungsfähigkeit Evolutionärer Algorithmen durch die Integration lokaler Suchverfahren. Doctoral thesis, FZKA 6965, University of Karlsruhe (in German) (2004), see also: www.iai.fzk.de/~jakob/HyGLEAM/
  10. 10.
    Abraham, A., Buyya, R., Nath, B.: Nature’s Heuristics for Scheduling Jobs on Computational Grids. In: Int. Conf. on Advanced Comp. and Communications (2000)Google Scholar
  11. 11.
    Halstenberg, S., Stucky, K.U., Süß, W.: A grid environment for simulation and optimization and a first implementation of a biomedical application. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS 2004. LNCS, vol. 3292, pp. 59–67. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Fischer, L. (ed.): Workflow Handbook (2001) ISBN 0-9703509-0-2Google Scholar
  13. 13.
  14. 14.
    Blume, C.: GLEAM - A System for Intuitive Learning. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 48–54. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Blume, C., Jakob, W.: GLEAM - An Evolutionary Algorithm for Planning and Control Based on Evolution Strategy. In: Cantú-Paz, E. (ed.) GECCO - 2002, Late Breaking Papers, pp. 31–38 (2002)Google Scholar
  16. 16.
    Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least Value of a Function. The Computer Journal 3, 175–184 (1960)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Box, M.J.: A New Method of Constrained Optimization and a Comparison with Other Methods. The Computer Journal 8, 42–52 (1965)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)MATHGoogle Scholar
  19. 19.
    Blume, C., Gerbe, M.: Deutliche Senkung der Produktionskosten durch Optimierung des Ressourceneinsatzes (in German). atp 36, 5/94, 25–29. Oldenbourg Verlag, München (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wilfried Jakob
    • 1
  • Alexander Quinte
    • 1
  • Karl-Uwe Stucky
    • 1
  • Wolfgang Süß
    • 1
  1. 1.Institute for Applied Computer ScienceForschungszentrum Karlsruhe GmbHKarlsruheGermany

Personalised recommendations