Advertisement

A Variable Group Block Distribution Strategy for Dense Factorizations on Networks of Heterogeneous Computers

  • Alexey Lastovetsky
  • Ravi Reddy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)

Abstract

In this paper, we present a static data distribution strategy called Variable Group Block distribution to optimize the execution of factorization of a dense matrix on a network of heterogeneous computers. The distribution is based on a functional performance model of computers, which tries to capture different aspects of heterogeneity of the computers including the (multi-level) memory structure and paging effects.

Keywords

Problem Size Distribution Strategy Memory Hierarchy Dense Factorization Speed Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I.: Experiments with mpC: Efficient Solving Regular Problems on Heterogeneous Networks of Computers via Irregularization. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 332–343. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations While Solving Linear Algebra Problems on Networks of Heterogeneous Computers. In: Sloot, P.M.A., Hoekstra, A.G., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe 1999. LNCS, vol. 1593, pp. 191–200. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Barbosa, J., Tavares, J., Padilha, A.J.: Linear Algebra Algorithms in a Heterogeneous Cluster of Personal Computers. In: Proceedings of the 9th Heterogeneous Computing Workshop (HCW 2000), pp. 147–159 (2000)Google Scholar
  4. 4.
    Barbosa, J., Morais, C.N., Padilha, A.J.: Simulation of Data Distribution Strategies for LU Factorization on Heterogeneous Machines. In: Proceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS 2003) (2003)Google Scholar
  5. 5.
    Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of Networks of Heterogeneous Computers. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004) (2004)Google Scholar
  6. 6.
    Choi, J., Dongarra, J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.: The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Rou-tines. Scientific Programming 5, 173–184 (1996)CrossRefGoogle Scholar
  7. 7.
    Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on Computers 50, 1052–1070 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blackford, L.S., Choi, J., Cleary, A., D’ Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexey Lastovetsky
    • 1
  • Ravi Reddy
    • 1
  1. 1.Department of Computer ScienceUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations