Parallel Processing Subsystems with Redundancy in a Distributed Environment

  • Adrian Kosowski
  • Michał Małafiejski
  • Paweł Żyliński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3911)


We consider the problem of dividing a distributed system into subsystems for parallel processing with redundancy for fault tolerance, where every subsystem has to consist of at least three units. We prove that the problem of determining the maximum number of subsystems with redundancy for fault tolerance is NP-hard even in cubic planar 2-connected system topologies. We point out that this problem is APX-hard on cubic bipartite graphs. At last, for subcubic topologies without units connected to only one other unit, we give a linear time 4/3-approximation algorithm.


Bipartite Graph Fault Tolerance Depth First Search Pendant Vertex System Topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baptiste, P., Timkovsky, V.G.: On preemption redundancy in scheduling unit processing time jobs on two parallel machines. Operations Research Letters 28, 205–212 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berman, F., Johnson, D., Leighton, T., Shor, P.W., Snyder, L.: Generalized planar matching. J. of Alg. 11, 153–184 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    De Bontridder, K.M.J., Haldórsson, B.V., Haldórsson, M.M., Hurkens, C.A.J., Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Mathematical Programming 98, 477–491 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. J. of Alg. 7, 174–184 (1986)CrossRefMATHGoogle Scholar
  5. 5.
    I-Ling, Y., Leiss, E.L., Bastani, F.B.: Exploiting redundancy to speed up parallel systems. IEEE Parallel & Distributed Technology: Sys. & Appl. 1, 51–60 (1993)CrossRefGoogle Scholar
  6. 6.
    Jackson, M.: Problem Structure and Dependable Architecture. In: Architecting Dependable Systems, vol. III, Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Kaneko, A., Kelmans, A., Nishimura, T.: On packing 3-vertex paths in a graph. J. of Graph Theory 36, 175–297 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kelmans, A., Mubayi, D.: How many disjoint 2-edge paths must a cubic graph have? J. of Graph Theory 45, 57–79 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Małafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Masuyama, S., Ibaraki, T.: Chain packing in graphs. Algorithmica 6, 826–839 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Petrank, E.: The hardness of approximations: gap locations. Computational Complexity 4, 133–157 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shedler, G.S., Lehman, M.M.: Evaluation of redundancy in a parallel algorithm. IBM Systems Journal 6, 142–149 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adrian Kosowski
    • 1
  • Michał Małafiejski
    • 1
  • Paweł Żyliński
    • 2
  1. 1.Department of Algorithms and System ModelingGdańsk University of TechnologyPoland
  2. 2.Institute of MathematicsUniversity of GdańskPoland

Personalised recommendations