Advertisement

A Model to Computational Speech Understanding

  • Daniel Nehme Müller
  • Mozart Lemos de Siqueira
  • Philippe O. A. Navaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3960)

Abstract

We propose a speech comprehension software architecture to represent the flow of the natural processing of auditory sentences. The computational implementation applies wavelets transforms to speech signal codification and data prosodic extraction, and connectionist models to syntactic parsing and prosodic-semantic mapping.

Keywords

Speech Signal Syntactic Analysis Syntactic Parsing Classical Pitch Pitch Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friederici, A.D.: Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences 6, 78–84 (2002)CrossRefGoogle Scholar
  2. 2.
    Friederici, A.D., Alter, K.: Lateralization of auditory language functions: A dynamic dual pathway model. Brain and Language 89, 267–276 (2004)CrossRefGoogle Scholar
  3. 3.
    Eckstein, K., Friederici, A.D.: Late interaction of syntactic and prosodic processes in sentence comprehension as revealed by erps. Cognitive Brain Research 25, 130–143 (2005)CrossRefGoogle Scholar
  4. 4.
    Mayberry III, M.R., Miikkulainen, R.: SARDSRN: a neural network shiftreduce parser. In: Proceedings of IJCAI 1999, pp. 820–825. Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pat. Anal. Mach. Intell. 11, 674–693 (1989)CrossRefGoogle Scholar
  7. 7.
    Kadambe, S., Boudreaux-Bartels, G.F.: A comparison of a wavelet transform event detection pitch detector with classical pitch detectors. In: Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1073–1078 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel Nehme Müller
    • 1
  • Mozart Lemos de Siqueira
    • 1
  • Philippe O. A. Navaux
    • 1
  1. 1.The Federal University of Rio Grande do SulPorto Alegre, Rio Grande do SulBrazil

Personalised recommendations