Advertisement

SABio: An Automatic Portuguese Text Summarizer Through Artificial Neural Networks in a More Biologically Plausible Model

  • Télvio Orrú
  • Joäo Luís Garcia Rosa
  • Márcio Luiz de Andrade Netto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3960)

Abstract

An implementation of a computational tool to generate new summaries from new source texts in Portuguese language, by means of connectionist approach (artificial neural networks) is presented. Among other contributions that this work intends to bring to natural language processing research, the employment of more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may lead to an increase in computational efficiency when compared to the so-called biologically implausible algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mani, I., Maybury, M.T.: Advances in Automatic Text Summarization. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Mani, I.: Automatic Summarization. John Benjamins Pub., Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Aretoulaki, M.: COSY-MATS: A Hybrid Connectionist-Symbolic Approach to the Pragmatic Analysis of Texts for Their Automatic Summarisation. PhD thesis, Univ. of Manchester (1996)Google Scholar
  4. 4.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)Google Scholar
  5. 5.
    Pardo, T.A.S., Rino, L.H.M., Nunes, M.G.V.: NeuralSumm: Uma Abordagem Conexionista para a Sumarizacão Automática de Textos. In: Anais do IV (ed.) Encontro Nacional de Inteligência Artificial - ENIA 2003, Campinas, São Paulo, Brazil, vol. 1, pp. 1–10 (2003)Google Scholar
  6. 6.
    Pardo, T.A.S., Rino, L.H.M., Nunes, M.G.V.: GistSumm: A Summarization Tool Based on a New Extractive Method. In: 6th Workshop on Computational Processing of the Portuguese Language, vol. 6, pp. 210–218 (2002)Google Scholar
  7. 7.
    van Rijsbergen, C.J.: Information Retrieval, 2nd edn., Butterworth, London (1979)Google Scholar
  8. 8.
    O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience - Understanding the Mind by Simulating the Brain. A Bradford Book, The MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Essential of Neural Science and Behavior. Appleton and ange, Stanford, Connecticut, USA (1995)Google Scholar
  10. 10.
    Rosa, J.L.G.: A Biologically Inspired Connectionist System for Natural Language Processing. In: Proc. of the 2002 VII Brazilian Symposium on Neural Networks - SBRN 2002, Recife, Brazil, pp. 243–248. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    O’Reilly, R.C.: Biologically Plausible Error-driven Learning using Local Activation Differences: The Generalized Recirculation Algorithm. Neural Computation 8(5), 895–938 (1996)CrossRefGoogle Scholar
  12. 12.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. A Bradford Book, MIT Press (1986)Google Scholar
  13. 13.
    Pardo, T.A.S., Rino, L.H.M.: TeMário: Um Corpus para Sumarizacão Automática de Textos. Technical report, NILCTR-03-09 - ICMC-USP, São Carlos, São Paulo, Brazil (2003)Google Scholar
  14. 14.
    Salton, G.: Automatic Text Processing - The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
  15. 15.
    Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes. Van Nostrand Reinhold, New York (1994)Google Scholar
  16. 16.
    Kupiec, J., Pedersen, J., Chen, F.: A Trainable Document Summarizer. ACM SIGIR 1, 68–73 (1995)Google Scholar
  17. 17.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing. In: Computational Linguistics, and Speech Recognition, Prentice Hall, Englewood Cliffs (2000)Google Scholar
  18. 18.
    Baxendale, P.B.: Machine-Made Index for Technical Literature: An Experiment. IBM Journal of Research and Development 2, 354–365 (1958)CrossRefGoogle Scholar
  19. 19.
    Black, W.J., Johnson, F.C.: A Practical Evaluation of Two Rule-Based Automatic Abstraction Techniques. Expert Systems for Information Management 1(3), 159–177 (1988)Google Scholar
  20. 20.
    Larocca, J.N., Santos, A.D., Kaestner, C.A.A., Freitas, A.A.: Generating Text Summaries through the Relative Importance of Topics. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 301–309. Springer, Heidelberg (2000)Google Scholar
  21. 21.
    Paice, C.D.: The Automatic Generation of Literature Abstracts: An Approach Based on the Identification of Self-indicating Phrases. In: Proc. of the 3rd annual ACM Conf. on Research and Development in Information Retrieval, Cambridge, England, Butterworth, pp. 172–191 (1981)Google Scholar
  22. 22.
    Rino, L.H.M., Pardo, T.A.S.: A Comparison of Automatic Summarization Systems for Brazilian Portuguese Texts. In: Proc. of the XVII Brazilian Symposium on Artificial Intelligence - SBIA 2004, São Luís, Maranhão, Brazil, pp. 235–244 (2004)Google Scholar
  23. 23.
    Modolo, M.: SUPOR: Um Ambiente para a Exploracão de Métodos Extrativos para a Sumarizacão Automática de Textos em Português. PhD thesis, Computing Department - UFSCar, São Carlos, São Paulo, Brazil (2003)Google Scholar
  24. 24.
    Larocca, J.N., Freitas, A.A., Kaestner, C.A.A.: Automatic Text Summarization Using a Machine Learning Approach. In: Proc. of the 16th Brazilian Symposium on Artificial Intelligence, Porto de Galinhas, Pernambuco, Brazil, pp. 205–215 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Télvio Orrú
    • 1
  • Joäo Luís Garcia Rosa
    • 2
  • Márcio Luiz de Andrade Netto
    • 1
  1. 1.Computer Engineering and Industrial Automation DepartmentState University of Campinas, UnicampCampinas, Säo PauloBrazil
  2. 2.Computer Engineering Faculty – CeatecPontifical Catholic University of Campinas, PUC-CampinasCampinas, Säo PauloBrazil

Personalised recommendations