Using Box-Muller with Low Discrepancy Points

  • Tim Pillards
  • Ronald Cools
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3984)


To use quasi-Monte Carlo methods, the integral is usually first (implicitly) transformed to the unit cube. Integrals weighted with the multivariate normal density are usually transformed to the unit cube with the inverse of the multivariate normal cumulative distribution function. However, other transformations are possible, amongst which the transformation by Box and Muller. The danger in using a non-separable transformation is that it might break the low discrepancy structure which makes quasi-Monte Carlo converge faster than regular Monte Carlo. We examine several transformations visually, theoretically and practically and show that it is sometimes preferable to use other transformations than the inverse cumulative distribution function.


Unit Cube Multivariate Normal Distribution Asian Option Polar Transformation Inverse Cumulative Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)MATHCrossRefGoogle Scholar
  2. 2.
    Berblinger, M., Schlier, C., Weiss, T.: Monte Carlo integration with quasi-random numbers: experience with discontinuous integrands. Computer Physics Communications 99, 151–162 (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Cools, R., Nuyens, D.: The role of structured matrices for the construction of integration lattices (submitted)Google Scholar
  4. 4.
    Devroye, L.: Non-uniform random variate generation. Springer, New York (1986)MATHGoogle Scholar
  5. 5.
    Fang, K.-T., Wang, Y.: Number theoretic methods in statistics. Chapman and Hall, London (1994)MATHGoogle Scholar
  6. 6.
    González, J., Tuerlinckx, F., De Boeck, P., Cools, R.: Numerical integration in logistic-normal models (submitted)Google Scholar
  7. 7.
    Hartinger, J., Kainhofer, R.F., Tichy, R.F.: Quasi-Monte Carlo algorithms for unbounded, weighted integration problems. Journal of Complexity 20(5), 654–668 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lemieux, C., L’Ecuyer, P.: Efficiency improvement by lattice rules for pricing Asian options. In: WSC 1998: Proceedings of the 30th conference on Winter simulation. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  9. 9.
    Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM Review 6(3), 260–264 (1964)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF regional conference series in applied mathematics, SIAM, Philadelphia, vol. 63 (1992)Google Scholar
  11. 11.
    Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 371–385. Springer, Berlin (2006)Google Scholar
  12. 12.
    Owen, A.B.: Quasi-Monte Carlo for integrands with point singularities at unknown locations. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 403–418. Springer, Berlin (2006)CrossRefGoogle Scholar
  13. 13.
    Owen, A.B.: Halton sequences avoid the origin, SIAM Review 48 (to appear)Google Scholar
  14. 14.
    Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz. 7(4), 784–802 (1967)MathSciNetGoogle Scholar
  15. 15.
    Paskov, S.H.: New methodologies for valuing derivatives. In: Pliska, S., Dempster, M. (eds.) Mathematics of Derivative Securities, pp. 545–582. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tim Pillards
    • 1
  • Ronald Cools
    • 1
  1. 1.Dept. of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations