Effects of Confinement on Chemical Reaction Equilibrium in Nanoporous Materials

  • William R. Smith
  • Martin Lísal
  • John K. Brennan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3984)


We present a molecular-level simulation study of the effects of confinement on chemical reaction equilibrium in nanoporous materials. We use the Reaction Ensemble Monte Carlo (RxMC) method to investigate the effects of temperature, nanopore size and capillary condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium with a bulk reservoir. We analyze the effects of the temperature, nanopore width and capillary condensation on the reaction equilibrium with respect to the reaction conversion and fluid structure.


Bulk Phase Reaction Equilibrium Capillary Condensation Reaction Conversion Model Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Rep. Prog. Phys. 62, 1573 (1999)CrossRefGoogle Scholar
  2. 2.
    Bandosz, T.J., Biggs, M.J., Gubbins, K.E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., Thomson, K.T.: Chemistry and Physics of Carbon. In: Radovic, L.R. (ed.), Marcel Dekker, New York, vol. 28, pp. 41–228 (2003)Google Scholar
  3. 3.
    Borówko, M., Patrykiejew, A., Sokołowski, S., Zagórski, R., Pizio, O.: Czech. J. Phys. 48, 371 (1998)Google Scholar
  4. 4.
    Borówko, M., Zagórski, R.: J. Chem. Phys.,  114, 5397 (2001)Google Scholar
  5. 5.
    Turner, C.H., Johnson, J.K., Gubbins, K.E.: J. Chem. Phys.  114, 1851 (2001)Google Scholar
  6. 6.
    Turner, C.H., Pikunic, J., Gubbins, K.E.: Molec. Phys.  99, 1991 (2001)Google Scholar
  7. 7.
    Turner, C.H., Brennan, J.K., Johnson, J.K., Gubbins, K.E.: J. Chem. Phys.  116, 2138 (2002)Google Scholar
  8. 8.
    Kaneko, K., Fukuzaki, N., Kakei, K., Suzuki, T., Ozeki, S.: Langmuir.  5, 960 (1989)Google Scholar
  9. 9.
    Nishi, Y., Suzuki, T., Kaneko, K.: J. Phys. Chem.  101, 1938 (1997)Google Scholar
  10. 10.
    Peng, X., Wang, W., Huang, S.: Fl. Ph. Equilib.  231, 138 (2005)Google Scholar
  11. 11.
    Hansen, N., Jakobtorweihen, S., Keil, F.J.: J. Chem. Phys.  122, 164–705 (2005)Google Scholar
  12. 12.
    Smith, W.R., Tříska, B.: J. Chem. Phys.  100, 3019 (1994)Google Scholar
  13. 13.
    Johnson, J.K., Panagiotopoulos, A.Z., Gubbins, K.E.: Molec. Phys.  81, 717 (1994)Google Scholar
  14. 14.
    Lísal, M., Nezbeda, I., Smith, W.R.: J. Chem. Phys.  110, 85–97 (1999)Google Scholar
  15. 15.
    Tripathi, S., Chapman, W.G.: J. Chem. Phys.  118, 79–93 (2003)Google Scholar
  16. 16.
    Smith, W.R., Missen, R.W.: Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley-Intersicence, New York, 1982; reprinted with corrections, Krieger Publishing, Malabar, FLA (1991)Google Scholar
  17. 17.
    Pedley, J.B.: Thermodynamical Data and Structures of Organic Compounds TRC Data Series, Thermodynamic Research Center, College Station, Texas (1994)Google Scholar
  18. 18.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)MATHGoogle Scholar
  19. 19.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, London (2002)Google Scholar
  20. 20.
    McGrother, S.C., Gubbins, K.E.: Molec. Phys.  97, 955 (1999)Google Scholar
  21. 21.
    Kohler, F., Bohn, M., Fischer, J., Zimmermann, R.: Monatsh. Chem.  118, 169 (1987)Google Scholar
  22. 22.
    Steele, W.A.: The Interaction of Gases with Solid Surfaces. Pergamon Press, Oxford (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • William R. Smith
    • 1
  • Martin Lísal
    • 2
    • 3
  • John K. Brennan
    • 4
  1. 1.Faculty of ScienceUniversity of Ontario Institute of TechnologyOshawaCanada
  2. 2.E. Hála Laboratory of Thermodynamics, Institute of Chemical Process FundamentalsAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.Department of Physics, Institute of Science, Ústí n. Lab.J.E. Purkinje UniversityCzech Republic
  4. 4.U.S. Army Research Laboratory, Weapons and Materials Research DirectorateU.S.A.

Personalised recommendations