Generation of Dynamic Heart Model Based on 4D Echocardiographic Images

  • Michał Chlebiej
  • Paweł Mikołajczak
  • Krzysztof Nowiński
  • Piotr Ścisło
  • Piotr Bała
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3984)


One of the most challenging problems in the modern cardiology is a correct quantification of the left ventricle contractility and synchronicity. Correct, quantitative assessment of these parameters, which could be changed in a course of many severe diseases of the heart (e.g. coronary artery disease and myocardial infarction, heart failure), is a key factor for the right diagnose and further therapy. Up to date, in clinical daily practice, most of these information is collected by transthoracic two dimensional echocardiography. Assessment of these parameters is difficult and depends on observer experience. However, quantification method of the contractility assessment based on strain and strain analysis are available, these methods still are grounded on 2D analysis. Real time 3D echocardiography gives physicians opportunity for real quantitative analysis of the left ventricle contractility and synchronicity. In this work we present a method for estimating heart motion from 4D (3D+time) echocardiographic images.


Anisotropic Diffusion Active Contour Model Speckle Noise Echocardiographic Image Segmentation Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montagnat, J., Delingette, H.: Space and time shape constrained deformable surfaces for 4D medical image segmentation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 196–205. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Papademetris, X., Sinuas, A., Dione, D., Duncan, J.: Estimation on 3D left ventricular deformation from echocardiography. Medical Image Anal. 5(1), 17–28 (2001)CrossRefGoogle Scholar
  3. 3.
    Montgant, J., Sermesant, M., Delingette, H., Malandain, G., Ayache, N.: Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images. Pattern Recognition Letters 24, 815–828 (2003)CrossRefGoogle Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. On Pattern Anal. and Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Weickert, J.: Anisotropic diffusion in image processing. G. G. Teubner, Stuttgart (1998)Google Scholar
  6. 6.
    Sederberg, T., Parry, S.: Free form deformation of solid geometric models. Computer Graphics 20(4), 151–160 (1986)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Studholme, C., et al.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32(1), 71–86 (1999)CrossRefGoogle Scholar
  9. 9.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 2790423, 623–656 (1948)Google Scholar
  10. 10.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  11. 11.
    Huang, X., Metaxas, D., Chen, T.: MetaMorphs: Deformable shape and texture models. In: IEEE Computer Vision and Pattern Recognition, Washington, D.C. (June 2004)Google Scholar
  12. 12.
    Monga, O., Deriche, R., Malandain, G., Cocquerez, J.P.: Recursive filtering and edge tracking: two primary tools for 3D edge detection. Image and Vision Computing 9(4), 203–214 (1991)CrossRefGoogle Scholar
  13. 13.
    Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. On Pattern Analysis and Machine Intelligence 15, 1131–1147 (1993)CrossRefGoogle Scholar
  14. 14.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)CrossRefGoogle Scholar
  15. 15.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46(3), 223–247 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michał Chlebiej
    • 1
  • Paweł Mikołajczak
    • 1
  • Krzysztof Nowiński
    • 2
  • Piotr Ścisło
    • 3
  • Piotr Bała
    • 4
  1. 1.Department of Information Technology, Institute of Computer ScienceMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Interdisciplinary Centre for Mathematical and Computational ModelingWarsaw UniversityWarsawPoland
  3. 3.Department of CardiologyMedical Academy of WarsawWarszawaPoland
  4. 4.Faculty of Mathematics and Computer Science.N. Copernicus UniversityToruńPoland

Personalised recommendations