Linkability of a Blind Signature Scheme and Its Improved Scheme

  • Jianhong Zhang
  • Tao Wei
  • JianYu Zhang
  • Wei Zou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3983)


Blind signature allows a user to obtain signatures from an authority on any document, in such a way that the authority learns nothing about the message that is being signed. The blindness is an important property in blind signature scheme. In this work, we analyze security of the blind signature[1], and show that the scheme hasn’t blindness, in other words, the signer is able to link a valid message-signature pair obtained by some user. To overcome the above flaw, we propose an improved scheme and show that the security of the improved scheme is based on the Computational Diffie-Hellman problem.


Signature Scheme Random Oracle Blind Signature Proxy Signature Bilinear Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, Z.J., Chen, K.F., Wang, Y.M.: Efficient identity-based signatures and blind signatures. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 120–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chaum, D.: Blind signature for untraceable payment. In: Advances in Cryptology-Crypto 1982, pp. 199–203. Springer, Heidelberg (1983)Google Scholar
  5. 5.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Kim, J.-H., Kim, K., Lee, C.S.: An efficient and provably secure threshold blind signature. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 318–327. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Pedersen, T.P.: Distributed provers with applications to undeniable signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Boldyreva, A.: Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman group signature. In: PKC 2003. LNCS, vol. 2139, pp. 31–46. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Wang, S., Bao, F., Deng, R.H.: Cryptanalysis of a forward secure blind signature scheme with provable security. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 53–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of Cryptology (9), 35–67 (1996)Google Scholar
  13. 13.
    Perrig, A.: The BiBa one-time signature and broadcast authentication. In: The 8th ACM Conference on Computer and Communication security, pp. 28–37. ACM, New York (2001)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Inomata, A., Okamoto, E.: A proposal of short proxy signature using pairing. In: The proceedings of the International Conference on Information Technology: Coding and Computing, pp. 631–635 (2005)Google Scholar
  15. 15.
    Pointcheval, D.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396Google Scholar
  16. 16.
    Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Zhang, F., Kim, K.: Efficient ID-based Blind Signature and Proxy signature from Bilinear Pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Schnorr, C.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Yi, X.: An Identity-Based Signature Scheme From the Weil Pairing. IEEE Communications Letter 7(2), 76–78 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jianhong Zhang
    • 1
    • 2
  • Tao Wei
    • 1
  • JianYu Zhang
    • 1
  • Wei Zou
    • 1
  1. 1.Institute of Computer Science & TechnologyPeking UniversityBeijingP.R.China
  2. 2.College of ScienceNorth China University of TechnologyBeijingP.R.China

Personalised recommendations