Performance Study of a Genetic Algorithm for Sequencing in Mixed Model Non-permutation Flowshops Using Constrained Buffers

  • Gerrit Färber
  • Anna M. Coves Moreno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)


This paper presents the performance study of a Genetic Algorithm applied to a mixed model non-permutation flowshop production line. Resequencing is permitted where stations have access to intermittent or centralized resequencing buffers. The access to the buffers is restricted by the number of available buffer places and the physical size of the products. Characteristics such as the difference between the intermittent and the centralized case, the number of buffer places and the distribution of the buffer places are analyzed. Improvements that come with the introduction of constrained resequencing buffers are highlighted.


Genetic Algorithm Assembly Line Crossover Point Genetic Operator Physical Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ignall, E., Schrage, L.: Application of the branch and bound technique to some flow-shop problems. Operations Research 13(3), 400–412 (1965)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Potts, C.: An adaptive branching rule for the permutation flowshop problem. European Journal of Operational Research 5(2), 19–25 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlier, J., Rebai, I.: Two branch and bound algorithms for the permutation flowshop problem. European Journal of Operational Research 90(2), 238–251 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Framinan, J., Gupta, J., Leisten, R.: A review and classification of heuristics for permuation flowshop scheduling with makespan objective. Technical Report OI/PPC-2001/02 (2002), Version 1, 2Google Scholar
  5. 5.
    Framinan, J., Leisten, R.: Comparison of heuristics for flowtime minimisation in permuation flowshops. Technical Report IO-2003/01 (2003), Version 0.5Google Scholar
  6. 6.
    Potts, C., Shmoys, D., Williamson, D.: Permutation vs. non-permutation flow shop schedules. Operations Research Letters 10(5), 281–284 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lee, H., Schaefer, S.: Sequencing methods for automated storage and retrieval systems with dedicated storage. Computers and Industrial Engineering 32(2), 351–362 (1997)CrossRefGoogle Scholar
  8. 8.
    Lahmar, M., Ergan, H., Benjaafar, S.: Resequencing and feature assignment on an automated assembly line. IEEE Transactions on Robotics and Automation 19(1), 89–102 (2003)CrossRefGoogle Scholar
  9. 9.
    Engstrőm, T., Jonsson, D., Johansson, B.: Alternatives to line assembly: Some swedish examples. International Journal of Industrial Ergonomics 17(3), 235–245 (1996)CrossRefGoogle Scholar
  10. 10.
    Rachakonda, P., Nagane, S.: Simulation study of paint batching problem in automobile industry (2000), http://sweb.uky.edy/~pkrach0/Projects/MFS605Project.pdf (consulted 14.07.2004)
  11. 11.
    Bolat, A.: Sequencing jobs on an automobile assembly line: objectives and procedures. International Journal of Production Research 32(5), 1219–1236 (1994)MATHCrossRefGoogle Scholar
  12. 12.
    Holland, J.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  14. 14.
    Bolat, A., Al-Harkan, I., Al-Harbi, B.: Flow-shop scheduling for three serial stations with the last two duplicate. Computers & Operations Research 32(3), 647–667 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Levitin, G., Rubinovitz, J., Shnits, B.: A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research 168, 811–825 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wang, L., Zhang, L., Zheng, D.: An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers & Operations Research (2006) (article in Press)Google Scholar
  17. 17.
    Rubén, R., Concepción, M.: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research 169(3), 781–800 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Michaelewicz, Z.: Gentic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Balasko, B., Abonyi, J., Feil, B.: Fuzzy clustering and data analysis toolbox; for use with matlab (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerrit Färber
    • 1
  • Anna M. Coves Moreno
    • 1
  1. 1.Instituto de Organización y Control de Sistemas Industriales (IOC)Universidad Politécnica de Cataluña (UPC)BarcelonaSpain

Personalised recommendations