Pseudorandom Number Generator Using Optimal Normal Basis

  • Injoo Jang
  • Hyeong Seon Yoo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)


This paper proposes a simple pseudorandom number generator [PRNG] by using optimal normal basis. It is well known that the squaring and multiplication in finite field with optimal normal basis is very fast and the basis can be transformed to a canonical form. The suggested PRNG algorithm combines typical multiplications and exclusive-or bit operations, both operations can be easily implemented. It is shown that the algorithm passes all terms of the Diehard and the ENT tests for long sequences. This algorithm can be applied in various applications such as financial cryptography.


Seed Size Test Suite Random Seed Pseudorandom Number Generator Binary File 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22 (2001),
  2. 2.
    Wu, P.: Random number generation with primitive pentanomials. ACT Trans. on Modeling and Computer Simulations 11(4), 346–351 (2001)CrossRefGoogle Scholar
  3. 3.
    Carr, J.R.: Simple random number generation. Computers & Geosciences 29, 1269–1275 (2003)CrossRefGoogle Scholar
  4. 4.
    Lee, L., Wong, K.: A random number generator based on elliptic curve operations. Computers and Mathematics with Applications 47, 217–226 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A.: Optimal normal bases in GF(pn). Discrete Applied Mathematics 22, 146–161 (1988)MathSciNetGoogle Scholar
  6. 6.
    Sunar, B., Koc, C.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. on Computers 50(1), 83–87 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Sunar, B., Koc, C.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. on Computers 50(1), 83–87 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Walker, J.: ENT, A pseudorandom number sequence test program (1998),
  9. 9.
    Ritter, T.: The efficient generation of cryptographic confusion sequences. Cryptologia 12(5), 81–139 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Marsaglia, G., Tsang, W.W.: The 64-bit universal RNG. Statistics & Probability Letters 66, 183–187 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marsaglia, G.: Diehard battery of tests of randomness (1995),
  12. 12.
    Ryabko, B.Y., Stognienko, V.S., Shokin, Y.I.: A new test for randomness and its application to some cryptographic problems. Journal of Statistical Planning and Inference 123, 365–376 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Injoo Jang
    • 1
  • Hyeong Seon Yoo
    • 1
  1. 1.School of Computer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations