Advertisement

An Efficient Multicast Tree with Delay and Delay Variation Constraints

  • Moonseong Kim
  • Young-Cheol Bang
  • Jong S. Yang
  • Hyunseung Choo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)

Abstract

With the rapid evolution of real time multimedia applications like audio/video conferencing, interactive distributed games and real time remote control system, a certain Quality of Service (QoS) needs to be guaranteed in underlying networks. Multicast routing algorithms should support the required QoS. There are two important QoS parameters, bounded delay and delay variation, that need to be guaranteed in order to support the real time multimedia applications. Here we solve Delay and delay Variation Bounded Multicast Tree (DVBMT) problem which has been proved to NP-complete. In this paper, we propose an efficient algorithm for DVBMT. The performance enhancement is up to about 21.7% in terms of delay variation as compared to the well-known algorithm, KBC [9].

Keywords

Source Node Destination Node Steiner Tree Delay Variation Multicast Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bang, Y.-C., Choo, H.: On multicasting with minimum costs for the Internet topology. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 736–744. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Takahashi, H., Matsuyama, A.: An Approximate Solution for the Steiner Problem in Graphs. Mathematica Japonica 24(6), 573–577 (1980)MATHMathSciNetGoogle Scholar
  4. 4.
    Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Networking 1(3), 286–292 (1993)CrossRefGoogle Scholar
  5. 5.
    Rouskas, G.N., Baldine, I.: Multicast routing with end-to-end delay and delay variation constraints. IEEE JSAC 15(3), 346–356 (1997)Google Scholar
  6. 6.
    Kim, M., Bang, Y.-C., Choo, H.: On Estimation for Reducing Multicast Delay Variation. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 117–122. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Sheu, P.-R., Chen, S.-T.: A Fast and Efficient Heuristic Algorithm for the Delay- and Delay Variation-Bounded Multicast Tree Problem. Computer Communications 25(8), 825–833 (2002)CrossRefGoogle Scholar
  8. 8.
    Ballardie, A., Cain, B., Zhang, Z.: Core Based Trees (CBT version 3) Multicast Routing protocol specification, Internet Draft, IETF (August 1998)Google Scholar
  9. 9.
    Kim, M., Bang, Y.-C., Choo, H.: Efficient Algorithm for Reducing Delay Variation on Bounded Multicast Trees. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 440–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, M., Bang, Y.-C., Choo, H.: On Algorithm for Efficiently Combining Two Independent Measures in Routing Paths. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 989–998. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Waxman, B.W.: Routing of multipoint connections. IEEE JSAC 6(9), 1617–1622 (1988)Google Scholar
  12. 12.
    Doar, M.: Multicast in the ATM environment, Ph.D dissertation, Cambridge University, Computer Lab. (September 1993)Google Scholar
  13. 13.
    Doar, M.: A Better Mode for Generating Test Networks. In: IEEE Proc. GLOBECOM 1996, pp. 86–93 (1996)Google Scholar
  14. 14.
    Toh, C.-K.: Performance Evaluation of Crossover Switch Discovery Algorithms for Wireless ATM LANs. In: IEEE Proc. INFOCOM 1996, pp. 1380–1387 (1996)Google Scholar
  15. 15.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an Internetwork. In: IEEE Proc. INFOCOM 1996, pp. 594–602 (1996)Google Scholar
  16. 16.
    Calvert, K.L., Doar, M.: Modelling Internet Topology. IEEE Communications Magazine, 160–163 (June 1997)Google Scholar
  17. 17.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the Web graph. In: Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 57–65 (2000)Google Scholar
  18. 18.
    Rodionov, A.S., Choo, H.: On Generating Random Network Structures: Connected Graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Moonseong Kim
    • 1
  • Young-Cheol Bang
    • 2
  • Jong S. Yang
    • 3
  • Hyunseung Choo
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Computer EngineeringKorea Polytechnic UniversityGyeonggi-DoKorea
  3. 3.Korea Institute of Industrial Technology Evaluation and PlanningSeoulKorea

Personalised recommendations