Multicast ω-Trees Based on Statistical Analysis

  • Moonseong Kim
  • Young-Cheol Bang
  • Hyunseung Choo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)


In this paper, we study the efficient multicast routing tree problem with QoS requirements. The new multicast weight parameter is proposed by efficiently combining two independent measures, the link cost and delay. The weight ω ∈[0,1] plays an important role in combining the two measures. If the ω approaches to 0, then the tree delay is decreasing. On the contrary if it closes to 1, the tree cost is decreasing. Therefore, if the ω is decided, then the efficient multicast tree can be found. A case study shows various multicast trees for each ω. When network users have various QoS requirements, the proposed multicast weight parameter is very informative for them.


Destination Node Steiner Tree Tree Delay Multicast Tree Multicast Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bang, Y.-C., Choo, H.: On multicasting with minimum costs for the Internet topology. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 736–744. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bharath-Kumar, K., Jaffe, J.M.: Routing to multiple destinations in computer networks. IEEE Trans. Commun. COMM-31(3), 343–351 (1983)CrossRefGoogle Scholar
  3. 3.
    Calvert, K.L., Doar, M.: Modelling Internet Topology. IEEE Communications Magazine, 160–163 (June 1997)Google Scholar
  4. 4.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Doar, M.: Multicast in the ATM environment. PhD thesis, Cambridge Univ., Computer Lab. (September 1993)Google Scholar
  6. 6.
    Doar, M.: A Better Mode for Generating Test Networks. In: IEEE Proc. GLOBECOM 1996, pp. 86–93 (1996)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)MATHGoogle Scholar
  8. 8.
    Gilbert, E.N., Pollak, H.O.: Steiner minimal tree. SIAM J. Appl. Math. 16 (1968)Google Scholar
  9. 9.
    Hakimi, S.L.: Steiner’s problem in graphs and its implication. Networks 1, 113–133 (1971)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Networking 1(3), 286–292 (1993)CrossRefGoogle Scholar
  11. 11.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Informatica 15, 141–145 (1981)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the Web graph. In: Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 57–65 (2000)Google Scholar
  13. 13.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  14. 14.
    Prim, R.C.: Shortest Connection Networks And Some Generalizations. Bell System Techn. J. 36, 1389–1401 (1957)Google Scholar
  15. 15.
    Ramanathan, S.: Multicast tree generation in networks with asymetric links. IEEE/ACM Transactions on Networking 4(4), 558–568 (1996)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rodionov, A.S., Choo, H.: On Generating Random Network Structures: Connected Graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Takahashi, H., Matsuyame, A.: An approximate solution for the steiner problem in graphs. Mathematica Japonica 24(6), 573–577 (1980)MATHGoogle Scholar
  18. 18.
    Toh, C.-K.: Performance Evaluation of Crossover Switch Discovery Algorithms for Wireless ATM LANs. In: IEEE Proc. INFOCOM 1996, pp. 1380–1387 (1993)Google Scholar
  19. 19.
    Waxman, B.W.: Routing of multipoint connections. IEEE J-SAC 6(9), 1617–1622 (1988)Google Scholar
  20. 20.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an Internetwork. In: Proc. INFOVCOM 1996, pp. 594–602 (1996)Google Scholar
  21. 21.
    Zhu, Q., Parsa, M., Garcia-Luna-Aceves, J.J.: A source-based algorithm for near-optimum delay-constrained multicasting. In: Proc. IEEE INFOCOM 1995, March 1995, pp. 377–385 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Moonseong Kim
    • 1
  • Young-Cheol Bang
    • 2
  • Hyunseung Choo
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Computer EngineeringKorea Polytechnic UniversityGyeonggi-DoKorea

Personalised recommendations