Advertisement

BEAST: A Buffer Replacement Algorithm Using Spatial and Temporal Locality

  • Jun-Ki Min
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3981)

Abstract

Efficient buffer management is closely related to system performance. Thus, much research has been performed on various buffer management techniques. However, many of the proposed techniques utilize the temporal locality of access patterns. In spatial database environments, there exists not only the temporal locality but also spatial locality, where the objects in the recently accessed regions will be accessed again in the near future. Thus, in this paper, we present a buffer management technique, called BEAST, which utilizes both the temporal locality and spatial locality in spatial database environments. The experimental results with real-life and synthetic data demonstrate the efficiency of BEAST.

Keywords

Temporal Locality Access Pattern Spatial Database Spatial Object Work Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinkhoff, T., Kriegel, H., Scheneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: Proceedings of ACM SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  2. 2.
    Min, J.-K., Park, H.-H., Chung, C.-W.: Multi-way spatial join selectivity for the ring join graph. Information and Software Technology 47(12), 785–795 (2005)CrossRefGoogle Scholar
  3. 3.
    Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and Optimization of Multiway Spatial Join Using R-Tree. In: Proceedings of ACM PODS, pp. 44–55 (1999)Google Scholar
  4. 4.
    Effelsberg, W.: Principles of Database buffer Management. ACM TODS 9(4), 560–595 (1984)Google Scholar
  5. 5.
    O’Neil, E.J., Neil, P.E.O., Weikum, G.: The LRU-K Page Replacement algorithm for database disk buffering. In: Proceedings of ACM SIGMOD Conference, pp. 297–306 (1993)Google Scholar
  6. 6.
    Johnson, T., Shasha, D.: 2Q: a Low Overhead High Performance Buffer Management Replacement Algorithm. In: Proceedings of VLDB Conference, pp. 439–450 (1994)Google Scholar
  7. 7.
    Tung, A.J., Yay, Y.C., Lu, H.: BLOOM: Buffer Replacement using Online Optimization by Mining. In: Proceedings of CIKM, pp. 185–192 (1998)Google Scholar
  8. 8.
    Lee, J.C.D., Kim, J.H., Noh, S.H., Min, S.L., Cho, Y., Kim, C.S.: LRFU: A Spectrum of Policies that subsumes the Least Recently Used and Least Frequently Used Policies. IEEE Tans. Computers 50(12), 1352–1360 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Megiddo, N., Modha, D.S.: ARC: A Self-tuning, Low Overhead Replacement Cache. In: Proceedings of USENIX FAST Conference (2003)Google Scholar
  10. 10.
    Sokolinsky, L.B.: LFU-K: An Effective Buffer Management Replacement Algorithm. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 670–681. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Juurlink, B.: Approximating the Optimal Replacement Algorithm. In: ACM CF Conference (2004)Google Scholar
  12. 12.
    Sacco, G.M.: Index Access with a Finite Buffer. In: Proceedings of VLDB Conference (1987)Google Scholar
  13. 13.
    Goh, C.H., Ooi, B.C., Sim, D., Tan, K.: GHOST: Fine Granularity Buffering of Index. In: Proceedings of VLDB Conference (1999)Google Scholar
  14. 14.
    Papadopoulos, A., Manolopoulos, Y.: Global Page Replacement in Spatial Databases. In: Proceedings of DEXA (1996)Google Scholar
  15. 15.
    Kamel, I., Faloutsos, C.: On Packing R-Trees. In: Proceedings of CIKM, pp. 490–499 (1993)Google Scholar
  16. 16.
    Brinkhoff, T.: A Robust and Self-tuning Page Replacement Strategy for Spatial Database Systems. In: Proceedings of DEXA, pp. 533–552 (2002)Google Scholar
  17. 17.
    Ki-Joune, L., Robert, L.: The Spatial Locality and a Spatial Indexing Method by Dynamic Clustering in Hypermap System. In: Proceedings of SSD, pp. 207–223 (1990)Google Scholar
  18. 18.
    Bureau, U.C.: UA Census, TIGER/Line Files (2000), http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jun-Ki Min
    • 1
  1. 1.School of Internet-Media EngineeringKorea University of Technology and EducationChungnamRepublic of Korea

Personalised recommendations