Analysis of Compatibility with Experimental Data of Fractal Descriptions of the Fracture Parameters

  • Dan Iordache
  • Stefan Pusca
  • Ghiocel Toma
  • Viorel Paun
  • Andreea Sterian
  • Cristian Morarescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


In order to check if the Fractal theory could be a useful tool for some quantitative descriptions of the fracture parameters, the present work studied different theoretical models (e.g. the Bazant’s Size Effect Law (SEL) [1], the Modified Size Effect Law [2,3] and the Carpinteri’s MultiFractal Scaling Law (MFSL) [4] of the fracture parameters of concrete specimen, and the compatibility of some of the above studied theoretical models relative to the experimental data, using certain recent procedures to study the global and local compatibility. The fracture parameters can be considered as main quantities for computational procedures for modeling the fracture of a certain ensemble (a suddenly emerging phenomena). In the next phase, the thermoelastic generation of ultrasonic perturbations in semitransparent solids was analyzed (using computer simulation) so as to find similarities with material properties as fractal dimensions, when the heat source is a laser radiation. The algorithm, the numerical analysis has taken into account three main physical phenomena: the absorption of electromagnetic energy in substance with heat generation; thermal diffusion with electromagnetic energy based heat source and elastodynamic wave generation by thermoelastic expansion.


Fractal Dimension Concrete Specimen Fracture Parameter Fractal Theory Uniqueness Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazant, Z.P.: Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics, ASCE Journal of Engineering Mechanics, ASCE 110, 518–535 (1984)Google Scholar
  2. 2.
    Kim, J.K., Eo, S.H.: Size effect in concrete specimens with dissimilar initial cracks. Magazine of Concrete Research 42, 233–238 (1990)CrossRefGoogle Scholar
  3. 3.
    Bazant, Z.P., Kazemi, M.T., Hasegawa, T.: Size effects in Brazilian split-cylinder tests.: measurements and fracture analysis. J. Mazers, ACI Materials Journal 88, 325–332 (1991)Google Scholar
  4. 4.
    Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials 18, 89–101 (1994)CrossRefGoogle Scholar
  5. 5.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman, San Francisco (1982)MATHGoogle Scholar
  6. 6.
    Rybaczuk, M., Zielinski, W.: The concept of fractal dimension, Chaos. Solitons and Fractals 12, 2517–2535 (2001) (part I) and 2537–2552 (part II) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van Vliet, M.R.A.: Ph. D. Dissertation, Tehnical University of Delft (January 31 2000)Google Scholar
  8. 8.
    Carpinteri, A., Ferro, F.: Scaling behaviour and dual renormalization of experimental tensile softening responses. Materials and Structures 31, 303–309 (1998)CrossRefGoogle Scholar
  9. 9.
    Carpinteri, A., Chiaia, B.: Size Effects on Concrete Fracture Energy: dimensional transition from Order to disorder. Materials and Structures 29, 259–264 (1996)CrossRefGoogle Scholar
  10. 10.
    Iordache, D.: On the Compatibility of some Theoretical Models relative to the Experimental Data. Proceedings of the 2nd Colloquium Mathematics in Engineering and Numerical Physics, Bucharest 2, 169–176 (2002)Google Scholar
  11. 11.
    Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 6, 721–722 (1984)CrossRefGoogle Scholar
  12. 12.
    Mandelbrot, B.B.: Opinions. Fractals (Complex Geometry, Patterns, and Scaling in Nature and Society) 1(1), 117–123 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Delsanto, P.P., Iordache, D., Pusca, S.: Study of the Correlations between different effective fractal dimensions used for fracture parameters descriptions. In: First South-East European Symposium on Interdisciplinary approaches in fractal analysis, Bucharest (May 7-10 2003)Google Scholar
  14. 14.
    Carpinteri, A., Ferro, F.: Scaling behaviour and dual renormalization of experimental tensile softening responses. Materials and Structures 31, 303–309 (1998)CrossRefGoogle Scholar
  15. 15.
    Jánossy, L.: Theory and Practice of the Evaluation of Measurements. Oxford University Press, Oxford (1965)MATHGoogle Scholar
  16. 16.
    Gukhman, A.A.: Introduction to the Theory of Similarity. Academic Press, New York (1965)Google Scholar
  17. 17.
    Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B.: Statistical Methods in Experimental Physics. North-Holland Publ. Company, Amsterdam (1982)Google Scholar
  18. 18.
    Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B.: Handbook of Applicable Mathematics, chief editor Walter Ledermann. Statistics, vol. VI. John Wiley & Sons, New York (1984)Google Scholar
  19. 19.
    John, P.W.M.: Statistical Methods in Engineering and Quality Assurance. John Wiley & Sons, New York (1990)MATHCrossRefGoogle Scholar
  20. 20.
    Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)MATHMathSciNetGoogle Scholar
  21. 21.
    Marquardt, D.W.: An algorithm for the least-square estimation of non-linear parameters. J. of Soc. Industr. Appl. Math. 11, 431–441 (1963)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gaelle, R., Pandora, P., Roland, O., Sophie, C., Christian, C.: Simultaneous Laser Generation and Laser Ultrasonic Detection of Mechanical Breakdown of a Coating – Substrate Interface, Ultrasonics (2001)Google Scholar
  23. 23.
    Storkely, U.: GHz Ultrasound Wave Packets in Water Generated by an Er Laser. J. Phys. D: Appl. Phys (1998)Google Scholar
  24. 24.
    Kritsakorn, L., Wonsiri, P., Laurence, J.J.: Guided Lamb Wave Propagation in Composite Plate. Journal of Engineering Mechanics, 1337–1341 (2002)Google Scholar
  25. 25.
    Andrea, F., Gottfried, L., Alexey, L., Peter, H.: Linear and Nonlinear Elastic Surface Waves; From Seismic Waves to Materials Science. Analytical Sciences 17, 9–12 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dan Iordache
    • 1
  • Stefan Pusca
    • 1
  • Ghiocel Toma
    • 1
  • Viorel Paun
    • 1
  • Andreea Sterian
    • 1
  • Cristian Morarescu
    • 2
  1. 1.Department of PhysicsPolitehnica UniversityBucharestRomania
  2. 2.Department of ComputersPolitehnica UniversityBucharestRomania

Personalised recommendations