Advertisement

Study of the Passage of an H +  Ion Along a Carbon Nanotube Using Quantum Wavepacket Dynamics

  • Dimitris Skouteris
  • Antonio Laganá
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)

Abstract

The passage of an H +  ion along a carbon nanotube is studied using a time-dependent wavepacket method. The initial state of the problem can be completely specified in terms of the mean energy of the ion along the nanotube, its radial energy (which is necessarily quantised given the wall boundary condition) and its angular momentum along an axis parallel to the nanotube. Its time-dependent flux across two boundaries on the two ends of the nanotube is monitored and examined for various initial conditions. Such calculations can serve to model more complicated systems, such as the migration of ions along cellular membranes.

Keywords

Angular Momentum Classical Mechanic Transverse Energy Semipermeable Membrane Wall Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arteconi, L., Laganá, A.: A molecular dynamics study of ion permeability through molecular pores. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 1093–1100. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Suaminathan, S., Karplus, M.: CHARMM - A program for macromolecular energy, minimisation and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  3. 3.
    Lu, T., Goldfield, E.M., Gray, S.K.: Journal of Theoretical and Computational Chemistry 2, 621–626 (2003)CrossRefGoogle Scholar
  4. 4.
    Lu, T., Goldfield, E.M., Gray, S.K.: J. Phys. Chem. B 107, 12989–12995 (2003)CrossRefGoogle Scholar
  5. 5.
    Beenakker, J.J.M., Borman, V.D., Krylov, S.Y.: Chem. Phys. Lett. 232, 379–382 (1995)CrossRefGoogle Scholar
  6. 6.
    Wang, Q.Y., Challa, S.R., Sholl, D.S., Johnson, J.K.: Phys. Rev. Lett. 82, 956–959 (1999)CrossRefGoogle Scholar
  7. 7.
    Challa, S.R., Sholl, D.S., Johnson, J.K.: Phys. Rev. B 63, 245419–247200 (2001)CrossRefGoogle Scholar
  8. 8.
    Challa, S.R., Sholl, D.S., Johnson, J.K.: J. Chem. Phys. 116, 814–824 (2002)CrossRefGoogle Scholar
  9. 9.
    Hathorn, B.C., Sumpter, B.G., Noid, D.W.: Phys. Rev. A. 64, 22903 (2001)CrossRefGoogle Scholar
  10. 10.
    Skouteris, D., Laganá, A., Capecchi, G., Werner, H.-J.: Int. J. Quant. Chem. 96, 562–567 (2004)CrossRefGoogle Scholar
  11. 11.
    Skouteris, D., Laganá, A., Capecchi, G., Werner, H.-J.: Int. J. Quant. Chem. 99, 577–584 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimitris Skouteris
    • 1
  • Antonio Laganá
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly
  2. 2.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations