New Molecular Mechanism of Dextran Extension in Single Molecule AFM

  • Igor Neelov
  • David Adolf
  • Tom McLeish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


A dextran monomer and a 10mer under constant pulling speed or constant force were studied using the atomistic simulations. Molecular dynamics (MD) with the Amber94 and Amber-Glycam04 forcefields were performed. The main result of the present Amber-based MD simulations is that the experimental plateau of the force-extension dependence for dextran can be explained by a transition of the glucopyranose rings in the dextran monomers from a chair (4C1) to a inverted chair (1C4) conformation whereas chair to boat transitions occur at higher forces. MD simulation of coarse-grained model of dextran consisting of two- or three-state monomers were performed to clarify the molecular mechanism of dextran extension.


Contour Length Boat Conformation C5C6 Bond Carbohydrate Research Monomer Length 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997)CrossRefGoogle Scholar
  2. 2.
    Marszalek, P.E., Oberhauser, A.F., Pang, Y.P., Fernandez, J.M.: Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998)CrossRefGoogle Scholar
  3. 3.
    Lee, G., Nowak, W., Jaroniec, J., Zhang, Q.M., Marszalek, P.E.: Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides (2004)Google Scholar
  4. 4.
    Kuttel, M., Brady, J.W., Naidoo, K.J.: Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. Journal of Computational Chemistry 23, 1236–1243 (2002)CrossRefGoogle Scholar
  5. 5.
    Neelov, I.M., Adolf, D.B., Paci, E., McLeish Biophys, T.C.B.: J. Molecular dynamics simulation of dextran extension by constant force in single molecule AFM (2006) (in press)Google Scholar
  6. 6.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A.: An All Atom Force-Field for Simulations of Proteins and Nucleic-Acids. Journal of Computational Chemistry 7, 230 (1986)CrossRefGoogle Scholar
  7. 7.
    MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102, 3586–3616 (1998)CrossRefGoogle Scholar
  8. 8.
    Homans, S.W.: A Molecular Mechanical Force-Field for the Conformational-Analysis of Oligosaccharides - Comparison of Theoretical and Crystal-Structures of Man-Alpha-1-3man-Beta-1-4glcnac. Biochemistry 29, 9110–9118 (1990)CrossRefGoogle Scholar
  9. 9.
    Woods, R.J., Dwek, R.A., Edge, C.J., Fraserreid, B.: Molecular Mechanical and Molecular Dynamical Simulations of Glycoproteins and Oligosaccharides.1. Glycam-93 Parameter Development. Journal of Physical Chemistry 99, 3832–3846 (1995)CrossRefGoogle Scholar
  10. 10.
    Eklund, R., Widmalm, G.: Molecular dynamics simulations of an oligosaccharide using a force field modified for carbohydrates. Carbohydrate Research 338, 393–398 (2003)CrossRefGoogle Scholar
  11. 11.
    Hemmingsen, L., Madsen, D.E., Esbensen, A.L., Olsen, L., Engelsen, S.B.: Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations. Carbohydrate Research 339, 937–948 (2004)CrossRefGoogle Scholar
  12. 12.
    Andersen, H.C.: Molecular-Dynamics Simulations at Constant Pressure and-or Temperature. Journal of Chemical Physics 72, 2384–2393 (1980)CrossRefGoogle Scholar
  13. 13.
    Kawakami, M., Byrne, K., Khatri, B., McLeish, T.C.B., Radford, S.E., Smith, D.A.: Viscoelastic properties of single polysaccharide molecules determined by analysis of thermally driven oscillations of an atomic force microscope cantilever. Langmuir 20, 9299–9303 (2004)CrossRefGoogle Scholar
  14. 14.
    Appell, M., Strati, G., Willett, J.L., Momany, F.A.: B3LYP/6-311++G** study of alpha- and beta-D-glucopyranose and 1,5-anhydro-D-glucitol: C-4(1) and C-1(4) chairs, B-3,B-O and B-3,B-0 boats, and skew-boat conformations. Carbohydrate Research 339, 537–551 (2004)CrossRefGoogle Scholar
  15. 15.
    Momany, F.A., Appell, M., Willett, J.L., Bosma, W.B.: B3LYP/6-311++G** geometry-optimization study of pentahydrates of alpha- and beta-d-glucopyranose. Carbohydrate Research 340, 1638–1655 (2005)CrossRefGoogle Scholar
  16. 16.
    O’Donoghue, P., Luthey-Shulten, Z.A.: Barriers to Forced Transitions in Polysaccharides. J.Physical Chemistry B 104, 10398–10405 (2000)CrossRefGoogle Scholar
  17. 17.
    Walther, K.A., Brujic, J., Li, H., Fernandes, J.F.: Sub Angstrom conformational changes of single molecule captured by AFM variance analysis. Biophysical J. (2006) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Igor Neelov
    • 1
    • 2
  • David Adolf
    • 1
  • Tom McLeish
    • 1
  1. 1.IRC in Polymer Science and TechnologyUniversity of LeedsLeedsUK
  2. 2.Institute of Macromolecular Compounds, RASSt.PetersburgRussia

Personalised recommendations