Dynamic Load-Balancing for the STEM-II Air Quality Model

  • J. Carlos Mouriño
  • María J. Martín
  • Patricia González
  • Ramón Doallo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


The aim of this work is to improve load balance of the MPI parallel version of the STEM-II air quality model. Several dynamic data distributions are proposed and evaluated on different systems: homogeneous and dedicated, and heterogeneous and/or non-dedicated. Results prove that dynamic distribution strategies perform better than traditional static distributions. Although all the data distributions presented here have been developed to be used with the STEM–II air quality model, they are also very suitable for use in other parallel applications.


Execution Time Load Balance Simulation Space Load Unbalance Balance Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balseiro, C., Souto, M., Penabad, E., Souto, J., Muñuzuri, V.P.: Development of a limited-area model for operational weather forecasting around a power plant: the need for specialized forecasts. Journal of Applied Meteorology 41(9), 919–939 (2002)CrossRefGoogle Scholar
  2. 2.
    Boullón, M., et al.: Modeling execution time of selected computation and communication kernels on Grid. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 731–740. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Carmichael, G., Peters, L., Saylor, R.: The STEM-II regional scale acid deposition and photochemical oxidant model - I. An overview of model development and applications. Atmospheric Environment 25A(10), 2077–2105 (1991)Google Scholar
  4. 4.
    Dabdub, D., Manohar, R.: Performance and portability of an air quality model. Parallel Computing 23(14), 2187–2200 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Dimov, I., Georgiev, K., Wasniewski, J., Zlatev, Z.: Three-dimensional version of the Danish Eulerian Model. In: Waśniewski, J., Madsen, K., Dongarra, J. (eds.) PARA 1995. LNCS, vol. 1041, pp. 151–157. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Elbern, H.: On the load balancing problem of comprehensive atmospheric air quality models. Journal System Analysis-Modelling-Simulation 32, 31–56 (1998)MATHGoogle Scholar
  7. 7.
    Elbern, H.: Parallelization and load balancing of a comprehensive atmospheric chemistry transport model. Atmospheric Environment 31, 3561–3574 (1997)CrossRefGoogle Scholar
  8. 8.
    Martín, M.J., Singh, D.E., Mouriño, J.C., Rivera, F.F., Doallo, R., Bruguera, J.D.: High Performance Air Pollution Modeling for a Power Plant Environment. Parallel Computing 29(11–12), 1763–1790 (2003)CrossRefGoogle Scholar
  9. 9.
    Martín, M.J., Parada, M., Doallo, R.: High Performance Air Pollution Simulation Using OpenMP. The Journal of Supercomputing 28, 311–321 (2004)CrossRefGoogle Scholar
  10. 10.
    Mouriño, J.C., Martín, M.J., González, P., Boullón, M., Cabaleiro, J.C., Pena, T.F., Rivera, F.F., Doallo, R.: A Grid-enable Air Quality Simulation. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A., Doallo, R. (eds.) Across Grids 2003. LNCS, vol. 2970, pp. 155–162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Niezgodka, M., Jakubiak, B.: Numerical Weather Prediction System: Scientific and Operational Aspects. In: Proceedings of the III Symposium on Military Meteorology, pp. 191–197 (1998)Google Scholar
  12. 12.
    Ostromsky, T., Zlatev, Z.: Flexible Two–Level Parallel Implementations of a Large Air Pollution Model. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 545–554. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Subhlok, J., Steenkiste, P., Stichnoth, J., Lieu, P.: Airshed pollution modeling: A case study in application development in an HPF environment. In: 12th International Parallel Processing Symposium, Orlando, FL, April 1998, pp. 701–710 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Carlos Mouriño
    • 1
  • María J. Martín
    • 2
  • Patricia González
    • 2
  • Ramón Doallo
    • 2
  1. 1.CESGA Supercomputing Center. Santiago de CompostelaSpain
  2. 2.Computer Architecture Group. Department of Electronics and SystemsUniversity of A CoruñaSpain

Personalised recommendations