A New Algorithm for Complex Stochastic Boolean Systems

  • Luis González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


Many different complex systems depend on a large number n of mutually independent random Boolean variables. For these systems, each one of the 2 n possible situations is described by its corresponding binary n-tuple, (u 1,...,u n ) , of 0s and 1s, and it has its own occurrence probability Pr{(u 1,...,u n )}. In this context, this paper provides a simple algorithm for rapidly generating all the binary n-tuples of 0s and 1s whose occurrence probabilities are always greater than or equal to (less than or equal to) the occurrence probability Pr{(u 1,...,u n )} of an arbitrary fixed binary n-tuple (u 1,...,u n ) ∈ {0,1} n . The results can be applied to many stochastic Boolean phenomena related to any scientific, technical or social area. All required previous results are described in detail, so that the presentation is self-contained.


Boolean Function Simple Algorithm Occurrence Probability Binary String Boolean Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    González, L.: A new method for ordering binary states probabilities in Reliability and Risk Analysis. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, part 1. LNCS, vol. 2329, pp. 137–146. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    González, L.: N-tuples of 0s and 1s: Necessary and sufficient conditions for intrinsic order. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003, part 1. LNCS, vol. 2667, pp. 937–946. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    González, L., Galván, B., García, D.: Sobre el análisis computacional de funciones Booleanas estocásticas de muchas variables. In: González, L., Sendra, J.R. (eds.) Proc. Primer Encuentro de Álgebra Computacional y Aplicaciones (EACA 1995), Santander, pp. 45–55 (1995)Google Scholar
  4. 4.
    González, L., García, D., Galván, B.J.: An intrinsic order criterion to evaluate large, complex fault trees. IEEE Trans. Reliability 53(3), 297–305 (2004)CrossRefGoogle Scholar
  5. 5.
    National Aeronautics and Space Administration: Fault Tree Analysis: A Bibliography. Technical report NASA/SP–2000-6111 (2000)Google Scholar
  6. 6.
    Schneeweiss, W.G.: Boolean Functions with Engineering Applications and Computer Programs. Springer, Berlin (1989)MATHGoogle Scholar
  7. 7.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  8. 8.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. In: Distribution Theory, vol. 1. Oxford University Press, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis González
    • 1
  1. 1.Department of Mathematics, Research Institute IUSIANIUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations