Advertisement

Non-euclidean Metrics and Chordal Space Structures

  • José Andrés Díaz Severiano
  • César Otero Gonzalez
  • Reinaldo Togores Fernandez
  • Cristina Manchado del Val
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)

Abstract

This paper proposes the use of the stereographic projection within the realm of Computational Geometry for the design of tree-dimensional space structures arising from planar power diagrams. In order that such structures (to which we apply the term Chordal) can approximate a broad catalogue of quadrics, it will be necessary to formulate this projection under non-Euclidean metrics.

Keywords

Voronoi Diagram Computational Geometry Delaunay Triangulation Stereographic Projection Panel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM Journal on Computing archive. Publisher Society for Industrial and Applied Mathematics 16(1), 78–96 (1987)MATHMathSciNetGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi Diagrams – a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Díaz, J.A., Otero, C., Togores, R., Manchado, C.: Power diagrams in the design of Chordal Space Structures. In: The 2nd International Symposium on Voronoi Diagrams in Science and Engineering, Seoul, Korea, pp. 93–104 (2005)Google Scholar
  4. 4.
    Díaz, J.A., Togores, R., Otero, C.: Chordal Space Structures: Computational Geometry Getting into Building and Civil Engineering. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 158–167. Springer, Heidelberg (2004)Google Scholar
  5. 5.
  6. 6.
    Pedoe, D.: Geometry. A Comprehensive Course, p. 139. Dover Publications, New York (1988)MATHGoogle Scholar
  7. 7.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, pp. 246–248. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. In: An elementary account of Galilean geometry and the Galilean principle of relativity. Springer, New York (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • José Andrés Díaz Severiano
    • 1
  • César Otero Gonzalez
    • 1
  • Reinaldo Togores Fernandez
    • 1
  • Cristina Manchado del Val
    • 1
  1. 1.Geographical Engineering and Graphical Expression Techniques Dept., Civil Engineering FacultyUniversity of CantabriaSpain

Personalised recommendations