Immersive Molecular Virtual Reality Based on X3D and Web Services

  • Osvaldo Gervasi
  • Sergio Tasso
  • Antonio Laganà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


An immersive Molecular Virtual Reality environment in which the user interacts with a X3D virtual world using immersive devices and dynamic gestures is presented.

The user through the virtual world invokes a Web server to perform a real-time simulation and find a stable molecular structure.

The outcome of the simulation is the representation of the stable structure of the molecular system in the X3D world.


Virtual Reality Virtual World Wire Frame Remote Procedure Call Dynamic Gesture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    QMOL package is developed by Jason Gans, Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853,
  2. 2.
  3. 3.
    VMD, Visual Molecular Dynamics, is developed by the Theoretical and Computational Biophysics Group (TCBG), an NIH Resource for Macromolecular Modeling and Bioinformatics, Beckman Institute of the University of Illinois at Urbana-Champaign (UIUC),
  4. 4.
    Riganelli, A., Gervasi, O., Laganà, A., Alberti, M.: A multiscale virtual reality approach to chemical experiments. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 324–330. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Gervasi, O., Riganelli, A., Pacifici, L., Laganà, A.: VMSLab-G: A Virtual Laboratory prototype for Molecular Science on the Grid. Future Generation Computer Systems 20(5), 717–726 (2004)CrossRefGoogle Scholar
  6. 6.
    Park, S.J., Lee, J., Kim, J.I.: A Molecular Modeling System Based on Dynamic Gestures. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 886–895. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    The X3D specifications and the documentation are available at the Web3D Consortium Web site:
  8. 8.
    Smith, W., Forester, T.R.: J. Molecular Graphics 14, 136 (1996), CrossRefGoogle Scholar
  9. 9.
    Liang, S.: The Java Native Interface: Programmer’s Guide and Specification, June 1999. Addison Wesley Longman, Inc., Amsterdam (1999), Google Scholar
  10. 10.
    The X3D-Edit authoring tool has been developed and released by the Web3D Consortium Web and is freely available for downloading at the URL,
  11. 11.
    The Xj3D is a project of the Web3D Consortium focused on creating a toolkit for VRML97 and X3D content written completely in Java. The Web site is
  12. 12.
  13. 13.
    Koltun, W.L.: Precision Space-Filling Atomic Models. Biopolymers 3, 665–679 (1965)CrossRefGoogle Scholar
  14. 14.
    The Web3D Consortium is the organization that is promoting 3D and Virtual Reality through the World Wide Web. The Web3D Web site, that is a repository of an impressive amount of software packages, documentation, examples is,
  15. 15.
    The Extensible Modeling and Simulation Framework (XMSF) uses X3D and XML Web Services to enable a new generation of distributed simulations,,
  16. 16.
    Davies, R.A., John, N.W., MacDonald, J.N., Hughes, K.H.: Visualization of Molecular Quantum Dynamics: A Molecular Visualization Tool with Integrated Web3D and Haptics. In: Proc. ACM Web3D Symposium (2005)Google Scholar
  17. 17.
    Behr, J., Ohne, P.D., Roth, M.: Utilizing X3D for Immersive Environments. In: Proc. ACM Web3D Symposium (2004)Google Scholar
  18. 18.
    Polys, N.: Stylesheet transformations for interactive visualization: towards a Web3D chemistry curricula. In: Proc. ACM Web3D Symposium (2003)Google Scholar
  19. 19.
    Riganelli, A., Gervasi, O., Laganà, A., Froehlich, J.: Virtual chemical laboratories and their management on the web. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 905–912. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Fifth Dimension Technology Inc., see,
  21. 21.
    For info related to the 6 degree-of-freedom Polhemus motion tracker visit,
  22. 22.
    Info on the 5DT HMD 800 series are available at the,
  23. 23.
    SOAP, the Simple Object Access Protocol, is a W3C standard that provides a way to communicate between applications running on different operating systems, with different technologies and programming languages over Internet. See,
  24. 24.
    The Universal Description, Discovery and Integration (UDDI) protocol creates a standard interoperable platform that enables applications to find and use Web services over the Internet. See,
  25. 25.
    The Web Services Description Language (WSDL) specification is available at the World Wide Web Consortium URL,
  26. 26.
    Shah, A.V., Walters, W.P., Shah, R., Dolata, D.P.: Babel a Tool for Converting Between Molecular Data Formats. In: Lysakowski, R., Gragg, C.E. (eds.) Computerized Chemical Data Standards: Databases, Data Interchange, and Information Systems, STP 1214, ASTM Philadelphia (1994),
  27. 27.
    Aguilar, A., Albertí, M., Laganà, A., Pacifici, L.: A Molecular dynamics study for isomerization of rare gas solvated (benzene)n–alkaline ion heteroclusters. Chem. Phys. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Osvaldo Gervasi
    • 1
  • Sergio Tasso
    • 1
  • Antonio Laganà
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly
  2. 2.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations