Advertisement

SimVIZ – A Desktop Virtual Environment for Visualization and Analysis of Protein Multiple Simulation Trajectories

  • Ricardo M. Czekster
  • Osmar Norberto de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)

Abstract

In silico protein conformation simulation generates massive amounts of data which needs to be properly visualized and analyzed. We are applying Desktop Information-Rich Virtual Environments (Desktop IRVE’s) techniques and concepts to aid multiple trajectory simulation analysis, improving user experience and developing a problem-solving environment to help the decision making process. We will present SimVIZ, a tool which integrates visualization to simulation analysis, improving previous knowledge about trajectories. This environment shows informative panels, Contact Maps, RMSD charts, the Ramachandran Plot and a Parallel Coordinate multidimensional visualization of simulation output in a single rendering scene. SimVIZ also opens multiple trajectories along with user associated information concerning many aspects of the simulation. SimVIZ is an integrated problem solving environment of multiple trajectories of protein simulations, offering various kinds of analysis and visualization tools used by the community to validate protein structures or to gather a better understanding of the protein folding process.

Keywords

Virtual Environment Ramachandran Plot Simulation Trajectory Information Visualization Visual Molecular Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowman, D.A., North, C., Chen, J., Polys, N.F., Pyla, P.S., Yilmaz, U.: Information-rich virtual environments: theory, tools, and research agenda. In: VRST 2003: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 81–90 (2003)Google Scholar
  2. 2.
    Vendruscolo, M., Domany, E.: Efficient dynamics in the space of contact maps. Folding and Design 3(5), 329–336 (1998)CrossRefGoogle Scholar
  3. 3.
    Branden, C., Tooze, J.: Introduction to protein structure. Garland (1999)Google Scholar
  4. 4.
    Leach, A.R.: Molecular Modeling: Principles and Applications. Person Education (2001)Google Scholar
  5. 5.
    van Gunsteren, W.F., Mark, A.E.: Validation of molecular dynamics simulation. J. Chem. Phys. 108, 6109–6116 (1998)CrossRefGoogle Scholar
  6. 6.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufman, San Francisco (2000)Google Scholar
  7. 7.
    Ma, K.-L.: Visualization - A Quickly Emerging Field. ACM SIGGRAPH Computer Graphics Quarterly 38(1), 4–7 (2004)CrossRefGoogle Scholar
  8. 8.
    Vailaya, A., Bluvas, P., Kincaid, R., Kuchinky, A., Creech, M., Adler, A.: An Architecture for Biological Information Extraction and Representation. Bioinformatics 21, 430–438 (2005)CrossRefGoogle Scholar
  9. 9.
    de Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data mining: a survey. IEEE Transactions on Visualization and Computer Graphics 9(3), 378–394 (2003)CrossRefGoogle Scholar
  10. 10.
    Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: VL 1996: Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  11. 11.
    Inselberg, A., Dimsdale, B.: Parallel Coordinates: A Tool for Visualizing Multidimensional Geometry. In: Proceedings of IEEE Visualization, pp. 361–375 (1990)Google Scholar
  12. 12.
    Fua, Y.-H., Ward, M.O.A.: Rundensteiner: Hierarchical Parallel Coordinates for Exploration of Large Datasets. In: VISUALIZATION 1999: Proceedings of the 10th IEEE Visualization 1999 Conference, VIS 1999 (1999)Google Scholar
  13. 13.
    Ribarsky, W., Ayers, E., Eble, J., Mukherjea, S.: Glyphmaker: Creating Customized Visualizations of Complex Data. Computer 27(7), 57–64 (1994)CrossRefGoogle Scholar
  14. 14.
    Ward, M.O.: A taxonomy of glyph placement strategies for multidimensional data visualization. Information Visualization 1(3), 194–210 (2002)CrossRefGoogle Scholar
  15. 15.
    Polys, N.F., Bowman, D.A.: Design and display of enhancing information in desktop information-rich virtual environments: challenges and techniques. Virtual Reality 8, 41–54 (2005)Google Scholar
  16. 16.
    van Gunsteren, W.F., Berendsen, H.J.C.: Computer Simulation of Molecular Dynamics: Methodology, Applications and Perspectives in Chemistry. Angewandte Chemie International Edition in English 29, 992–1023 (1990)CrossRefGoogle Scholar
  17. 17.
    Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., DeBolt, S., Ferguson, D., Seibel, G., Kollman, P.: AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, vol. 91, pp. 1–41 (1995)Google Scholar
  18. 18.
    Humphrey, W., Dalke, A., Schulten, K.: VMD - Visual Molecular Dynamics. J. Molec. Graphics 14, 33–38 (1996)CrossRefGoogle Scholar
  19. 19.
    DeLano, W.L.: The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos (2002)Google Scholar
  20. 20.
    van Teylingen, R., Ribarsky, W., van der Mast, C.: Virtual Data Visualizer. IEEE Transactions on Visualization and Computer Graphics, 65–74 (1997)Google Scholar
  21. 21.
    Polys, N.F., Bowman, D.A., North, C., Laubenbacher, R., Duca, K.: PathSim visualizer: an Information-Rich Virtual Environment framework for systems biology. In: Web3D 2004: Proceedings of the ninth international conference on 3D Web technology, pp. 7–14 (2004)Google Scholar
  22. 22.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)CrossRefGoogle Scholar
  23. 23.
    Frishman, D., Argos, P.: Knowledge-based protein secondary structure assignment. Proteins 23(4), 566–579 (1995)CrossRefGoogle Scholar
  24. 24.
    Fast Light Toolkit (FLTK). Available on, http://www.fltk.org/ (Accessed on November 2005)
  25. 25.
    OpenGL - The Industry Standard for High Performance Graphics. Available on, http://www.opengl.org/ (Accessed on November 2005)
  26. 26.
    A Font Library for OpenGL. Available on, http://plib.sourceforge.net/fnt/index.html (Accessed on November 2005)

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ricardo M. Czekster
    • 1
  • Osmar Norberto de Souza
    • 1
  1. 1.Laboratório de BioinformáticaModelagem e Simulação de Biossistemas – LABIO, PPGCC – FACIN, PUCRSPorto AlegreBrasil

Personalised recommendations